22.09.2019

Какой изгиб земли на 1 км. Влияние кривизны земли на измеренные расстояния



При геодезических работах, выполняемых на небольших по площади участках местности, уровенную поверхность принимают за горизонтальную плоскость. Такая замена влечет за собой некоторые искажения в длинах линий и высотах точек.
Рассмотрим при каких размерах участка этими искажениями можно пренебречь. Допустим, что уровенная поверхность является поверхностью шара радиуса R (рис.1.2). Заменим участок шара АоВоСо горизонтальной плоскостью АВС, касающейся шара в центре участка в точке В. Расстояние между точками В (Во) и Со равно г, центральный угол соответствующий данной дуге обозначим а, отрезок касательной

ВС = t, тогда в горизонтальном расстоянии между точками В (Во) и Со возникнет ошибка Ad = t - d. Из рис. 1.2 находим t = R tga и d = R a, где угол а выражен в радианах a = d / R, тогда A d =R(tga -a) а так как значение d незначительно по сравнению с R то угол настолько мал,
о

что приближенно можно принять tga -а = а /3. Применив формулу определения угла а, окончательно получаем: A d = R- а /3 = d /3R . При d = 10 км и R = 6371 км погрешность определения расстояния при замене сферической поверхности плоскостью составит 1 см.Учитывая реальную точность, с которой производят измерения на местности при геодезических работах, можно считать, что на участках радиусом 2025 км погрешность от замены уровенной поверхности плоскостью не имеет практического значения. Иначе обстоит дело с влиянием кривизны Земли на высоты точек. Из прямоугольного треугольника ОВС

(1.2)
откуда
(1.3) где р - отрезок отвесной линии ССо, выражающий влияние кривизны Земли на высоты точки С. Так как полученное значение р очень мало, по сравнению с R, то в знаменателе полученной формулы этой величиной можно пренебречь. Тогда получим

(1.4)
Для различных расстояний l определим поправки в высоты точек местности, значения которых представлены в табл. 1.1, из которой видно, что влияние кривизны Земли на высоты точек сказывается уже на расстоянии в 0,3 км. Это необходимо учитывать при производстве геодезических работ.
Таблица 1.1
Погрешности измерений высот точек на разных расстояниях


l, км

0,3

0,5

1,0

2,0

5,0

10,0

20,0

Р, м

0,01

0,02

0,08

0,31

1,96

7,85

33,40

Рис. 4 Основные линии и плоскости наблюдателя

Для ориентирования в море принята система условных линий и плоскостей наблюдателя. На рис. 4 изображен земной шар, на поверхности которого в точке М располагается наблюдатель. Его глаз находится в точке А . Буквой е обозначена высота глаза наблюдателя над уровнем моря. Линия ZMn, проведенная через место наблюдателя и центр земного шара, называется отвесной или вертикальной линией. Все плоскости, проведенные через эту линию, называются вертикальными , а перпендикулярные ей - горизонтальными . Горизонтальная плоскость НН / , проходящая через глаз наблюдателя, называется плоскостью истинного горизонта . Вертикальная плоскость VV / , проходящая через место наблюдателя М и земную ось, называется плоскостью истинного меридиана. В пересечении этой плоскости с поверхностью Земли образуется большой круг РnQPsQ / , называемый истинным меридианом наблюдателя . Прямая, полученная от пересечения плоскости истинного горизонта с плоскостью истинного меридиана, называется линией истинного меридиана или полуденной линией N-S. Этой линией определяется направление на северную и южную точки горизонта. Вертикальная плоскость FF / , перпендикулярная плоскости истинного меридиана, называется плоскостью первого вертикала . В пересечении с плоскостью истинного горизонта она образует линию Е-W, перпендикулярную линии N-S и определяющую направления на восточную и западную точки горизонта. Линии N-S и Е-W делят плоскость истинного горизонта на четверти: NE, SE, SW и NW.

Рис.5. Дальность видимости горизонта

В открытом море наблюдатель видит вокруг судна водную поверхность, ограниченную малым кругом СС1 (рис. 5). Этот круг называется видимым горизонтом. Расстояние De от места судна М до линии видимого горизонта СС 1 называется дальностью видимого горизонта . Теоретическая дальность видимого горизонта Dt (отрезок AB) всегда меньше его действительной дальности De. Это объясняется тем, что из-за различной плотности слоев атмосферы по высоте луч света распространяется в ней не прямолинейно, а по кривой АС. В результате наблюдатель может видеть дополнительно некоторую часть водной поверхности, расположенную за линией теоретического видимого горизонта и ограниченную малым кругом СС 1 . Этот круг и является линией видимого горизонта наблюдателя. Явление преломления световых лучей в атмосфере называется земной рефракцией. Рефракция зависит от атмосферного давления, температуры и влажности воздуха. В одном и том же месте Земли рефракция может меняться даже на протяжении одних суток. Поэтому при расчетах берут среднее значение рефракции. Формула для определения дальности видимого горизонта:


В результате рефракции наблюдатель видит линию горизонта в направлении АС / (рис. 5), касательном к дуге АС. Эта линия приподнята на угол r над прямым лучом АВ. Угол r также называется земной рефракцией. Угол d между плоскостью истинного горизонта НН / и направлением на видимый горизонт называется наклонением видимого горизонта .

ДАЛЬНОСТЬ ВИДИМОСТИ ПРЕДМЕТОВ И ОГНЕЙ. Дальность видимого горизонта позволяет судить о видимости предметов, находящихся на уровне воды. Если предмет имеет определенную высоту h над уровнем моря, то наблюдатель может обнаружить его на расстоянии:

На морских картах и в навигационных пособиях приводится заранее вычисленная дальность видимости огней маяков Dk с высоты глаза наблюдателя 5 м. С такой высоты De равна 4,7 мили. При е , отличной от 5 м, следует вносить поправку. Её величина равна:

Тогда дальность видимости маяка Dn равна:

Дальность видимости предметов, расчитанная по данной формуле, называется геометрической, или географической. Вычисленные результаты соответствуют некоторому среднему состоянию атмосферы в дневное время суток. При мгле, дожде, снегопаде или туманной погоде видимость предметов, естественно, сокращается. Наоборот, при определенном состоянии атмосферы рефракция может быть очень большой, вследствие чего дальность видимости предметов оказывается значительно больше рассчитанной.

Дальность видимого горизонта. Таблица 22 МТ-75:

Таблица вычислена по формуле:

Де = 2.0809 ,

Входя в табл. 22 MT-75 с высотой предмета h над уровнем моря, получают дальность видимости этого предмета с уровня моря. Если к полученной дальности прибавить дальность видимого горизонта, найденную в той же таблице по высоте глаза наблюдателя е над уровнем моря, то сумма этих дальностей составит дальность видимости предмета, без учета прозрачности атмосферы.

Для получения дальности радиолокационного горизонта Дp принято выбранную из табл. 22 дальность видимого горизонта увеличивать на 15%, тогда Дp=2.3930 . Эта формула справедлива для стандартных условий атмосферы: давление 760 мм, температура +15°C, градиент температуры - 0.0065 градуса на метр, относительная влажность, постоянная с высотой, 60%. Любое отклонение от принятого стандарт­ного состояния атмосферы обусловит частичное изменение дальности радиолокационного горизонта. Кроме того, эта дальность, т. е. расстоя­ние, с которого могут быть видны отраженные сигналы на экране радио­локатора, в значительной степени зависит от индивидуальных особенностей радиолокатора и отражающих свойств объекта. По этим причинам пользоваться коэффициентом 1.15 и данными табл. 22 следует с осторожностью.

Сумма дальностей радиолокационного горизонта антенны Лд и наблюдаемого объекта высотой А представит собой максимальное рас­стояние, с которого может вернуться отраженный сигнал.

Пример 1. Определить дальность обнаружения маяка высотой h=42 м от уровня моря с высоты глаза наблюдателя е=15.5 м.
Решение. Из табл. 22 выбирают:
для h = 42 м ..... . Дh = 13.5 мили;
для е = 15.5 м . . . . . . Де = 8.2 мили,
следовательно, даль­ность обнаружения маяка
Дп = Дh+Дe = 21.7 мили.

Дальность видимости предмета можно определить также по номограмме, помещенной на вкладыше (приложение 6). MT-75

Пример 2. Найти радиолокационную дальность объекта высотой h=122 м, если действующая высота радиолокационной антенны Hд= 18.3 м над уровнем моря.
Решение. Из табл. 22 выбирают дальности видимости объекта и антенны с уровня моря соответственно 23.0 и 8.9 мили. Суммируя эти дальности и умножая их на коэффициент 1.15, получают, что объект при стандартных условиях атмосферы, вероятно, будет обнаружен с расстояния 36.7 мили.


ПРЕДМЕТЫ ПАДАЮТ РОВНО ВНИЗ БЕЗ СМЕЩЕНИЯ

Если бы земля под нами действительно вращалась в восточном направлении, как это предполагает гелиоцентрическая модель, то ядра из пушки, выпущенные вертикально, должны падать заметно западнее. На самом же деле, когда бы этот эксперимент ни проводился, пушечные ядра, выпущенные идеально вертикально отвесной линии, освещенные огнепроводным шнуром, в среднем за 14 секунд достигали верха и падали обратно в течение 14 секунд не более чем на 2 фута (0,6м) от пушки, или иногда прямо обратно в дуло! Если бы Земля на самом деле вращалась со скоростью 600-700 миль в час (965-1120 км/ч) в средних широтах Англии и Америки, где проводились эксперименты, пушечные ядра должны падать на целых 8400 фута (2,6 км) или около мили с половиной позади пушки!

САМОЛЕТЫ ЛЕТАЮТ ОДИНАКОВО ВО ВСЕХ НАПРАВЛЕНИЯХ И БЕЗ КОРРЕКЦИИ НА КРИВИЗНУ И ВРАЩЕНИЕ ЗЕМЛИ

Если бы Земля под нашими ногами вращалась со скоростью несколько сотен миль в час, то пилоты вертолетов и воздушных шаров должны просто подниматься прямо вверх, парить и ждать, пока их место назначения достигнет их! Подобное никогда не происходило в истории аэронавтики.

Например, если бы Земля и ее нижняя атмосфера якобы вращались вместе в восточном направлении со скоростью 1038 миль в час (1670 км/ч) на экваторе, то пилоты самолетов должны были бы дополнительно ускориться на 1038 миль в час при полетах на Запад! А пилоты, движущиеся на север и юг по необходимости должны устанавливать диагональные курсы, чтобы компенсировать это! Но так как никаких компенсаций не требуется, за исключением фантазий астрономов, то следует, что Земля неподвижна.


ОБЛАКА И ВЕТЕР ПЕРЕМЕЩАЮТСЯ ВНЕ ЗАВИСИМОСТИ ОТ БОЛЬШОЙ СКОРОСТИ ВРАЩЕНИЯ ЗЕМЛИ

Если Земля и атмосфера постоянно вращаются в восточном направлении со скоростью 1000 миль в час, то, как облака, ветер и погодные явления случайно и непредсказуемо идут в разные стороны, часто направляясь одновременно в противоположных направлениях? Почему мы можем почувствовать незначительный западный бриз, но не невероятное предполагаемое вращение Земли на восток со скоростью 1000 миль в час!? И как эта магическая липучка-гравитация достаточно сильна, чтобы тянуть в одиночку мили земной атмосферы, но в то же время так слаба, что позволяет маленьким жукам, птицам, облакам и самолетам свободно двигаться с прежним темпом в любом направлении?

ВОДА ВЕЗДЕ РОВНАЯ, НЕСМОТРЯ НА КРИВИЗНУ ЗЕМЛИ

Если бы мы жили на вращающейся шарообразной Земле, то каждый пруд, озеро, болото, канал и другие места со стоячей водой имели бы небольшую дугу или полукруг, расширяющуюся от центра книзу.

В Кембридже, Англия, есть канал размером в 20 миль, называемый «Олд Бедфорд», проходящий по прямой линии через Фенландс, известный как Бедфордская равнина. Вода не прерывается затворами и шлюзами и остается стационарной, что делает еѐ идеально подходящей для определения действительности существования кривизны. Во второй половине 19-го века Доктор Самуэль Роуботам, известный «плоскоземлянин» и автор замечательной книги «Земля – это не шар! Экспериментальное исследование истинной формы Земли: доказательство, что она является плоскостью, без осевого или орбитального движения; и только материальный мир во Вселенной!», отправился в Бедфордскую равнину и провел серию экспериментов, чтобы определить, является ли поверхность стоячей воды плоской или выпуклой.
На поверхности длиной в 6 миль (9,6км) не было замечено каких-либо снижений или изгиба вниз от линии видимости. Но если земля – это шар, то поверхность воды длиной в 6 миль должна была быть выше на 6 футов в центре, чем на ее концах. Из этого эксперимента следует, что поверхность стоячей воды не является выпуклой и, следовательно, Земля не является шаром!

ВОДА НЕ ВЫПЛЕСКИВАЕТСЯ ИЗ-ЗА ОГРОМНОГО ВРАЩЕНИЯ ЗЕМЛИ И ЦЕНТРОБЕЖНОЙ СИЛЫ
«Ели Земля была бы шаром, вращающимся и лихо летящим в «пространстве» со скоростью «сто миль в 5 секунд», то воды морей и океанов не могли бы ни по каким законам держаться на поверхности. Утверждение, что они могли бы удерживаться в этих обстоятельствах является надругательством над человеческим пониманием и доверием! Но если Земля – которая является обитаемым участком суши– была бы признана за «выступающую из воды и стоящую в воде» из «огромной глубины», которая окружена границей льда, мы можем бросить то заявление обратно в зубы тех, кто сделал его, и помахать перед ними флагом разума и здравого смысла, с подписанным на нем доказательством, что Земля не является шаром», - Уильям Карпентер

САМЫЕ ДЛИННЫЕ РЕКИ МИРА НЕ ИМЕЮТ ПЕРЕПАДОВ УРОВНЯ ВОДЫ ИЗ-ЗА КРИВИЗНЫ ЗЕМЛИ

В одной части своего длинного маршрута великая река Нил протекает тысячу миль при падении лишь на 1фут (30 см). Этот подвиг был бы совершенно невозможен, если бы Земля имела сферический изгиб. Многие другие реки, включая Конго в Западной Африке, Амазонку в Южной Америке и Миссисипи в Северной Америке, все они плывут тысячи миль в направлениях, полностью несовместимых с предполагаемой сферичностью Земли

РЕКИ ТЕКУТ ВО ВСЕХ НАПРАВЛЕНИЯХ, А НЕ СНИЗУ ВВЕРХ

«Есть реки, которые текут на восток, запад, север и юг, то есть реки текут во всех направлениях по поверхности Земли в одно и то же время. Если бы Земля была шаром, то некоторые из них будут течь в гору, а другие вниз, имея в виду то, что на самом деле означает «вверх» и «вниз» в природе, независимо, какую форму они принимают. Но так как реки не текут в гору, а теория сферичности земли требует этого, то это доказывает, что Земля не является шаром

ВСЕГДА РОВНЫЙ ГОРИЗОНТ

Будь то уровень моря, вершина горы Эверест, или полет на высоте в сотни тысяч футов в воздухе, всегда горизонтальная линия горизонта поднимается вверх, находясь на уровне глаз наблюдателя, и остается совершенно прямой. Вы можете проверить самостоятельно на пляже или вершине холма, в большом поле или пустыне, на борту воздушного шара с горячим воздухом или вертолете; вы увидите, панорамный горизонт поднимется вместе с вами и останется везде абсолютно горизонтальным. Если бы Земля на самом деле была большим шаром, горизонт должен был бы опуститься, когда вы поднимаетесь, не подняться до уровня ваших глаз, а отдалиться от каждого конца периферии вашего зрения, не остаться ровным по всей длине.

Если бы Земля на самом деле была большим шаром 25000 миль (40233 км) в окружности, то горизонт был бы заметно изогнут даже на уровне моря, и всѐ, находящееся на или стремящееся к линии горизонта, с нашего ракурса казалось бы немного наклонѐнным. Отдаленные здания вдоль линии горизонта смотрелись бы подобно Пизанской башне, падающей в сторону от наблюдателя. Воздушный шар, поднявшись и затем постепенно удаляющийся от вас, на шарообразной Земле казался бы медленно и постоянно отклоняющимся назад всѐ больше и больше, наряду с его удалением; дно корзины постепенно входит в поле зрения, тогда как верхняя часть воздушного шара исчезает из вида. В действительности, однако, здания, воздушные шары, деревья, люди, - что угодно и всѐ остается под тем же углом относительно поверхности или горизонта независимо от того, на каком расстоянии находится наблюдатель.

«Обширные области демонстрируют абсолютно ровную поверхность, от Карпат до Урала на расстоянии в 1500 (2414км) миль существует лишь легкий подъѐм. К югу от Балтики страна настолько плоская, что преобладающий северный ветер будет гнать воду из Щецинского залива в устье Одры, и даст реке обратный ход на 30 или 40 миль (48-64км). Равнины Венесуэлы и Новой Гранады в Южной Америке, расположенные на левой стороне реки Ориноко, называют Льянос или равнинными полями. Часто на расстоянии 270 квадратных миль (700 кв.км) поверхность не меняется ни на фут. Амазонка спускается на 12 футов (3,5м) только на последних 700 милях (1126км) своего курса; Ла Плата спускается только на одну тридцать третью дюйма на милю (0,08 см/1,6км)», - Рев. Т. Мильнер, «Атлас физической географии»

Высота маяка в порте Николсон, Новая Зеландия, составляет 420 футов (128м) над уровнем моря, и он виден за 35 миль (56км), но это значит, что он должен находиться на расстоянии 220 футов (67м) ниже уровня горизонта. Маяк Ёгеро в Норвегии находится на расстоянии 154 фута (47м) над уровнем моря и виден на расстоянии 28 статутных миль (46км), что значит, что он должен находиться на расстоянии 230 футов ниже горизонта. Маяк в Мадрасе, на Эспланаде, имеет высоту 132 фута (40м) и виден с 28 миль (46км), когда он должен быть 250 футов (76м) ниже линии видимости. Маяк Кордонэн высотой 207 футов (63м) на западном побережье 47 Франции виден с 31 мили (50км), что должно быть 280 футов (85м) ниже линии видимости. Маяк на мысе Бонависта, Ньюфаундленд, составляет 150 футов (46м) над уровнем моря и виден с 35 миль (56км), когда он должен быть на 491 фут (150м) ниже линии горизонта. Высота маяка - шпиля церкви Св.Ботольфа в Бостоне составляет 290 футов (88м), он виден с расстояния более чем 40 миль (64км), когда должен быт скрыт на целых 800 футов (244м) за уровнем горизонта!

КАНАЛЫ, ЖЕЛЕЗНЫЕ ДОРОГИ ПРОЕКТИРУЮТ БЕЗ УЧЕТА КРИВИЗНЫ ЗЕМЛИ

Геодезисты, инженеры и архитекторы в своих проектах никогда не учитывают предполагаемую кривизну Земли, что является ещѐ одним доказательством того, что мир представляет собой плоскость, а не планету. Каналы и железные дороги, например, всегда прокладывают горизонтально, часто на сотни миль, без учѐта какой-либо кривизны.
Инженер В. Винклер в "Обзоре Земли" от октября 1893 г. писал по поводу предполагаемой кривизны Земли: "Как инженер с 52 многолетним опытом, я видел, что это абсурдное допущение используется только в школьных учебниках. Ни один инженер даже не помышляет принимать во внимание вещи такого рода. Я спроектировал много миль железных дорог и ещѐ больше каналов, и у меня даже не возникало мысли допускать искривление поверхности, а тем более его учитывать. Учет кривизны означает - 8 дюймов на первой миле канала, далее увеличение в соответствии с показателем, составляющим квадрат расстояния в милях; таким образом, небольшой судоходный канал, скажем 30 миль в длину, будет иметь, по указанному выше правилу, отступ для кривизны в 600 футов (183м) . Подумайте об этом, и, пожалуйста, поверьте, что инженеры не такие уж дураки. Ничего подобного не учитывается. Мы не думаем об учете кривизны в 600 футов, для линии железной дороги или канала 30 миль (965км) в длину, больше, чем тратим своѐ время, пытаясь объять необъятное".


САМОЛЕТЫ ЛЕТАЮТ ТОЛЬКО ПО РОВНЫМ ОДИНАКОВЫМ ВЫСОТАМ, БЕЗ КОРРЕКЦИИ НА КРИВИЗНУ ЗЕМЛИ

Если бы Земля была сферой, то пилотам самолетов приходилось бы постоянно корректировать свою высоту, чтобы не вылететь прямиком в "космическое пространство!" Если бы Земля действительно была сферой 25000 миль (40233км) в окружности с наклоном 8 дюймов на милю в квадрате, то пилоту, желающему поддерживать одинаковую высоту при типичной скорости 500 миль в час (804км/ч), пришлось бы постоянно нырять носом вниз и снижаться на 2777 футов (846м) каждую минуту! В противном случае, при отсутствии корректировки, через час пилот окажется на 166666 футов (51км) выше, чем ожидалось! Самолет, летящий на обычной высоте в 35000 футов (10км), желая поддерживать эту высоту на верхнем краю так называемой "тропосферы", через один час оказался бы более чем на 200000 футов (61км) 57 в "мезосфере", и чем дальше он будет лететь, тем больше будет траектория. Я разговаривал с несколькими пилотами, и никакой компенсации для предполагаемой кривизны Земли не производится. Когда пилоты выходят на необходимую высоту, их искусственный показатель горизонта остается ровным, как и курс; никаких необходимых 2777 футов в минуту (846км/мин) наклона никогда не учитывается.

АНТАРКТИДА И АРТИКА РАЗНЫЕ ПО КЛИМАТУ

Если бы Земля действительно была шаром, то полярные регионы Арктики и Антарктики на соответствующих широтах на севере и юге от экватора имели бы сходные условия и особенности: похожие температуры, сезонные изменения, продолжительность светового дня, особенности растительного и животного мира. В действительности, сопоставимые широты к северу и к югу от экватора арктических и антарктических районов во многом сильно отличаются. "Если земля является шаром, согласно популярному мнению, то одинаковое количество тепла и холода, лета и зимы должно присутствовать на соответствующих широтах на севере и юге от экватора. Одинаковым было бы количество растений и животных, и одинаковыми были бы общие условия. Всѐ обстоит как раз наоборот, что опровергает предположение о шарообразности. Большие контрасты между районами в одинаковых широтах на север и юг от экватора являются сильным аргументом против принятого учения о шарообразности Земли

Какова дальность до линии горизонта для наблюдателя, стоящего на земле? Ответ — приближённое расстояние до горизонта — можно найти с помощью теоремы Пифагора.

Для проведения приближённых расчётов сделаем допущение, что Земля имеет форму шара. Тогда стоящий вертикально человек будет продолжением земного радиуса, а линия взгляда, направленного на горизонт, — касательной к сфере (поверхности Земли). Так как касательная перпендикулярна радиусу, проведённому в точку касания, то треугольник (центр Земли) —(точка касания) —(глаз наблюдателя) является прямоугольным.

Две стороны в нём известны. Длина одного из катетов (стороны, прилегающей к прямому углу) равна радиусу Земли $R$, а длина гипотенузы (стороны, лежащей против прямого угла) равна $R+h$, где $h$ — расстояние от земли до глаз наблюдателя.

По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы. Значит, расстояние до горизонта равно
$$
d=\sqrt{(R+h)^2-R^2} = \sqrt{(R^2+2Rh+h^2)-R^2} =\sqrt{2Rh+h^2}.
$$Величина $h^2$ очень мала по сравнению со слагаемым $2Rh$, поэтому верно приближённое равенство
$$
d≈ \sqrt{2Rh}.
$$
Известно, что $R≈ 6400$ км, или $R≈ 64\cdot10^5$ м. Будем считать, что $h≈ 1{,}6$ м. Тогда
$$
d≈\sqrt{2\cdot64\cdot10^5\cdot 1{,}6}=8\cdot 10^3 \cdot \sqrt{0{,}32}.
$$Используя приближённое значение $\sqrt{0{,}32}≈ 0{,}566$, находим
$$
d≈ 8\cdot10^3 \cdot 0{,}566=4528.
$$Полученный ответ — в метрах. Если перевести найденное приближённое расстояние от наблюдателя до горизонта в километры, то получим $d≈ 4,5$ км.

В дополнение — три микросюжета, связанных с рассмотренной задачей и проделанными вычислениями.

I. Как связано расстояние до горизонта с изменением высоты точки наблюдения? Формула $d≈ \sqrt{2Rh}$ даёт ответ: чтобы увеличить расстояние $d$ вдвое, высоту $h$ надо увеличить в четыре раза!

II. В формуле $d≈ \sqrt{2Rh}$ нам пришлось извлекать квадратный корень. Конечно, читатель может взять смартфон со встроенным калькулятором, но, во‐первых, полезно задуматься, а как же решает эту задачу калькулятор, а во‐вторых, стоит ощутить умственную свободу, независимость от «всезнающего» гаджета.

Существует алгоритм, сводящий извлечение корня к более простым операциями — сложению, умножению и делению чисел. Для извлечения корня из числа $a>0$ рассмотрим последовательность
$$
x_{n+1}=\frac12 (x_n+\frac{a}{x_n}),
$$где $n=0$, 1, 2, …, а в качестве $x_0$ можно взять любое положительное число. Последовательность $x_0$, $x_1$, $x_2$, … очень быстро сходится к $\sqrt{a}$.

Например, при вычислении $\sqrt{0,32}$ можно взять $x_0=0,5$. Тогда
$$
\eqalign{
x_1 &=\frac12 (0,5+\frac{0,32}{0,5})=0,57,\cr
x_2 &=\frac12 (0,57+\frac{0,32}{0,57})≈ 0,5657.\cr}
$$Уже на втором шаге мы получили ответ, верный в третьем знаке после запятой ($\sqrt{0,32}=0,56568…$)!

III. Иногда алгебраические формулы удаётся столь наглядно представить как соотношения элементов геометрических фигур, что всё «доказательство» заключается в рисунке с подписью «Смотри!» (в стиле древних индийских математиков).

Объяснить геометрически можно и использованную формулу «сокращённого умножения» для квадрата суммы
$$
(a+b)^2=a^2+2ab+b^2.
$$Жан‐Жак Руссо в «Исповеди» писал: «Когда я в первый раз обнаружил при помощи вычисления, что квадрат бинома равен сумме квадратов его членов и их удвоенному произведению, я, несмотря на правильность произведённого мною умножения, не хотел этому верить до тех пор, пока не начертил фигуры».

Литература

  • Перельман Я. И. Занимательная геометрия на вольном воздухе и дома. - Л.: Время, 1925. - [И любое издание книги Я. И. Перельмана «Занимательная геометрия»].

© 2024
artistexpo.ru - Про дарение имущества и имущественных прав