26.09.2019

Тригонометрические функции простыми словами. Синус (sin x) и косинус (cos x) – свойства, графики, формулы


Справочные данные по тригонометрическим функциям синус (sin x) и косинус (cos x). Геометрическое определение, свойства, графики, формулы. Таблица синусов и косинусов, производные, интегралы, разложения в ряды, секанс, косеканс. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение синуса и косинуса




|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x


График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    Определения

    Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

    Рассмотрим два радиуса этой окружности: неподвижный (где точка) и подвижный (где точка). Пусть подвижный радиус образует с неподвижным угол.

    Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом, называется синусом угла : .

    Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом, называется косинусом угла : .

    Таким образом, точка, являющаяся концом подвижного радиуса, образующего угол, имеет координаты.

    Тангенсом угла называется отношение синуса этого угла к его косинусу: , .

    Котангенсом угла называется отношение косинуса этого угла к его синусу: , .

    Геометрический смысл тригонометрических функций

    Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть, .

    Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

    Также подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

    С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

    Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

    Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

    Свойства тригонометрических функций

    Рассмотрим некоторые основные свойства тригонометрических функций. Остальные свойства будут рассмотрены в разделе, посвященном графикам тригонометрических функций.

    Область определения и область значений

    Как уже было сказано ранее, синус и косинус существуют для любых углов, т.е. областью определения этих функций является множество действительных чисел. По определению тангенс не существует для углов , а котангенс для углов, .

    Поскольку синус и косинус являются ординатой и абсциссой точки на тригонометрической окружности, их значения лежат в промежутке. Областью значения тангенса и котангенса является множество действительных чисел (в этом нетрудно убедиться, глядя на оси тангенсов и котангенсов).

    Четность/нечетность

    Рассмотрим тригонометрические функции двух углов (который соответствует подвижному радиусу) и (который соответствует подвижному радиусу). Поскольку, значит точка имеет координаты. Поэтому, т.е. синус - функция нечетная; , т.е. косинус - функция четная; , т.е. тангенс нечетен; , т.е. котангенс также нечетен.

    Промежутки знакопостоянства

    Знаки тригонометрических функций для различных координатных четвертей следуют из определения этих функций. Следует отметить, что поскольку тангенс и котангенс являются отношениями синуса и косинуса, они положительны, когда синус и косинус угла имеют одинаковые знаки и отрицательны когда разные.

    Периодичность


    Периодичность синуса и косинуса основана на том факте, что углы, отличающиеся на целое количество полных оборотов, соответствуют одному и тому же взаимному расположению подвижного и неподвижного лучей. Соответственно и координаты точки пересечения подвижного луча и тригонометрической окружности будут одинаковы для углов, отличающихся на целое количество полных оборотов. Таким образом, периодом синуса и косинуса является и, где.

    Очевидно, что также является периодом для тангенса и котангенса. Но существует ли меньший период для этих функций? Докажем, что наименьшим периодом для тангенса и котангенса является.

    Рассмотрим два угла и. Оп геометрическому смыслу тангенса и котангенса, . По стороне и прилежащим к ней углам равны треугольники и, значит равны и их стороны, значит и. Аналогичным образом можно доказать, то, где. Таким образом, периодом тангенса и котангенса является.

    Тригонометрические функции основных углов

    Формулы тригонометрии

    Для успешного решения тригонометрических задач необходимо владеть многочисленными тригонометрическими формулами. Тем не менее, нет необходимости заучивать все формулы. Знать наизусть нужно лишь самые основные, а остальные формулы нужно уметь при необходимости вывести.

    Основное тригонометрическое тождество и следствия из него

    Все тригонометрические функции произвольного угла связаны между собой, т.е. зная одну функции всегда можно найти остальные. Эту связь дают формулы, рассматриваемые в данном разделе.

    Теорема 1 (Основное тригонометрическое тождество) . Для любого справедливо тождество

    Доказательство состоит в применении теоремы Пифагора для прямоугольного треугольника с катетами, и гипотенузой.

    Справедлива и более общая теорема.

    Теорема 2 . Для того, чтобы два числа можно было принять за косинус и синус одного и того же вещественного угла, необходимо и достаточно, чтобы сумма их квадратов была равна единице:

    Рассмотрим следствия из основного тригонометрического тождества.

    Выразим синус через косинус и косинус через синус:

    В данный формулах знак плюс или минус перед корнем выбирается в зависимости от четверти, в которой лежит угол.

    Подставляя полученные выше формулы в формулы, определяющие тангенс и котангенс, получаем:

    Разделив основное тригонометрическое тождество почленно на или получим соотвественно:

    Эти соотношения можно переписать в виде:

    Следующие формулы дают связь между тангенсом и котангенсом. Поскольку при, а при, то имеет место равенство:

    Формулы приведения

    С помощью формул приведения можно выразить значения тригонометрических функций произвольных углов через значения функций острого угла. Все формулы приведения могут быть обобщены с помощью следующего правила.

    Любая тригонометрическая функция угла, по абсолютной величине равна той же функции угла, если число - четное, и ко-функции угла, если число - нечетное. При этом если функция угла, положительна, когда - острый положительный угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

    Формулы суммы и разность углов

    Теорема 3 . Для любых вещественных и справедливы следующие формулы:

    Доказательство остальных формул основано на формулах приведения и четности/нечетности тригонометрических функций.

    Что и требовалось доказать.

    Теорема 4 . Для любых вещественных и, таких, что

    1. , справедливы следующие формулы

    2. , справедливы следующие формулы

    Доказательство. По определению тангенса

    Последнее преобразование получено делением числителя и знаменателя этой дроби на.

    Аналогично для котангенса (числитель и знаменатель в этом случае делятся на):

    Что и требовалось доказать.

    Следует обратить внимание на тот факт, что правые и левые части последних равенств имеют разные области допустимых значений. Поэтому применение этих формул без ограничений на возможные значения углов может привести к неверным результатам.

    Формулы двойного и половинного угла

    Формулы двойного угла позволяют выразить тригонометрические функции произвольного угла через функции угла в два раза меньше исходного. Эти формулы являются следствиями формул суммы двух углов, если положить в них углы равными друг другу.

    Последнюю формулу можно преобразовать с помощью основного тригонометрического тождества:

    Таким образом, для косинуса двойного угла существует три формулы:

    Следует отметить, что данная формула справедлива только при

    Последняя формула справедлива при, .

    Аналогично функциям двойного угла могут быть получены функции тройного угла. Здесь данные формулы приводятся без доказательства:

    Формулы половинного угла являются следствиями формул двойного угла и позволяют выразить тригонометрические функции некоторого угла через функции угла в два раза больше исходного.

    Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x 0 и отсчитать от оси Ox угол x 0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М . Длина отрезка ОМ равна абсолютной величине абсциссы точки A . Данному значению аргумента x 0 сопоставлено значение функции y = cos x 0 как абсциссы точки А . Соответственно точка В (x 0 ; у 0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу , токосинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:

    –1 = cos x = 1.

    Дополнительный поворот на любой угол, кратный 2p , возвращает точку A на то же место. Поэтому функция у = cos x p :

    cos (x + 2p ) = cos x.

    Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x , найти на окружности соответствующие точки A x и А -x . Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М . Поэтому

    cos (–x ) = cos (x ),

    т.е. косинус – четная функция, f (–x ) = f (x ).

    Значит, можно исследовать свойства функции y = cos х на отрезке , а затем учесть ее четность и периодичность.

    При х = 0 точка А лежит на оси Ох , ее абсцисса равна 1, а потому cos 0 = 1. С увеличением х точка А передвигается по окружности вверх и влево, ее проекция, естественно, только влево, и при х = p /2 косинус становится равен 0. Точка A в этот момент поднимается на максимальную высоту, а затем продолжает двигаться влево, но уже снижаясь. Ее абсцисса все убывает, пока не достигнет наименьшего значения, равного –1 при х = p . Таким образом, на отрезке функция у = cos х монотонно убывает от 1 до –1 (рис. 4, 5).

    Из четности косинуса следует, что на отрезке [–p , 0] функция монотонно возрастает от –1 до 1, принимая нулевое значение при х = p /2. Если взять несколько периодов, получится волнообразная кривая (рис. 6).

    Итак, функция y = cos x принимает нулевые значения в точках х = p /2 + kp , где k – любое целое число. Максимумы, равные 1, достигаются в точках х = 2kp , т.е. с шагом 2p , а минимумы, равные –1, в точках х = p + 2kp .

    Функция y = sin х.

    На единичной окружности углу x 0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N . З начение функции у 0 = sin x 0 определяется как ордината точки А . Точка В (угол x 0 , у 0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2p :

    sin (x + 2p ) = sin (x ).

    Для двух значений аргумента, х и – , проекции соответствующих им точек А x и А -x на ось Оу расположены симметрично относительно точки О . Поэтому

    sin (–x ) = –sin (x ),

    т.е. синус – функция нечетная, f(–x ) = –f(x ) (рис. 9).

    Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,

    sin (x + p /2) = cos x.

    Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством

    Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ , а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство

    |sin x | x|, верное при любом х .

    Формулу (*) математики называют замечательным пределом. Из нее, в частности, следует, что sin х » х при малых х .

    Функции у = tg х, у = ctg х . Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:

    Как синус и косинус, тангенс и котангенс – функции периодические, но их периоды равны p , т.е. они вдвое меньше, чем у синуса и косинуса. Причина этого понятна: если синус и косинус оба поменяют знаки, то их отношение не изменится.

    Поскольку в знаменателе тангенса находится косинус, то тангенс не определен в тех точках, где косинус равен 0, – когда х = p /2 + kp . Во всех остальных точках он монотонно возрастает. Прямые х = p /2 + kp для тангенса являются вертикальными асимптотами. В точках kp тангенс и угловой коэффициент составляют 0 и 1 соответственно (рис. 12).

    Котангенс не определен там, где синус равен 0 (когда х = kp ). В остальных точках он монотонно убывает, а прямые х = kp его вертикальные асимптоты. В точках х = p /2 + kp котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).

    Четность и периодичность.

    Функция называется четной, если f (–x ) = f (x ). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:

    sin (–α) = – sin α tg (–α) = – tg α
    cos (–α) = cos α ctg (–α) = – ctg α
    sec (–α) = sec α cosec (–α) = – cosec α

    Свойства четности вытекают из симметричности точек P a и Р - a (рис. 14) относительно оси х . При такой симметрии ордината точки меняет знак ((х ; у ) переходит в (х ; –у)). Все функции – периодические, синус, косинус, секанс и косеканс имеют период 2p , а тангенс и котангенс – p :

    sin (α + 2) = sin α cos (α + 2) = cos α
    tg (α + ) = tg α ctg (α + ) = ctg α
    sec (α + 2) = sec α cosec (α + 2) = cosec α

    Периодичность синуса и косинуса следует из того, что все точки P a + 2 kp , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + kp поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.

    Основные свойства тригонометрических функций могут быть сведены в таблицу:

    Функция Область определения Множество значений Четность Участки монотонности (k = 0, ± 1, ± 2,…)
    sin x –Ґ x Ґ [–1, +1] нечетная возрастает при x О ((4k – 1) p /2, (4k + 1) p /2),убывает при x О ((4k + 1) p /2, (4k + 3) p /2)
    cos x –Ґ x Ґ [–1, +1] четная Возрастает приx О ((2k – 1) p , 2kp ),убывает приx О (2kp , (2k + 1) p )
    tg x x p /2 + p k (–Ґ , +Ґ ) нечетная возрастает приx О ((2k – 1) p /2, (2k + 1) p /2)
    ctg x x p k (–Ґ , +Ґ ) нечетная убывает приx О (kp , (k + 1) p )
    sec x x p /2 + p k (–Ґ , –1] И [+1, +Ґ ) четная Возрастает приx О (2kp , (2k + 1) p ),убывает приx О ((2k – 1) p , 2kp )
    cosec x x p k (–Ґ , –1] И [+1, +Ґ ) нечетная возрастает приx О ((4k + 1) p /2, (4k + 3) p /2),убывает приx О ((4k – 1) p /2, (4k + 1) p /2)

    Формулы приведения.

    По этим формулам значение тригонометрической функции аргумента a , где p /2 a p , можно привести к значению функции аргумента a , где 0 a p /2, как той же, так и дополнительной к ней.

    Аргумент b – a + a p – a p + a + a + a 2p – a
    sin b cos a cos a sin a –sin a –cos a –cos a –sin a
    cos b sin a –sin a –cos a –cos a –sin a sin a cos a

    Поэтому в таблицах тригонометрических функций даются значения только для острых углов, причем достаточно ограничиться, например, синусом и тангенсом. В таблице даны только наиболее употребительные формулы для синуса и косинуса. Из них легко получить формулы для тангенса и котангенса. При приведении функции от аргумента вида kp /2 ± a , где k – целое число, к функции от аргумента a :

    1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;

    2) знак в правой части совпадает со знаком приводимой функции в точке kp /2 ± a , если угол a острый.

    Например, при приведении ctg (a – p /2) убеждаемся, что a – p /2 при 0 a p /2 лежит в четвертом квадранте, где котангенс отрицателен, и, по правилу 1, меняем название функции: ctg (a – p /2) = –tg a .

    Формулы сложения.

    Формулы кратных углов.

    Эти формулы выводятся прямо из формул сложения:

    sin 2a = 2 sin a cos a ;

    cos 2a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;

    sin 3a = 3 sin a – 4 sin 3 a ;

    cos 3a = 4 cos 3 a – 3 cos a ;

    Формулу для cos 3a использовал Франсуа Виет при решении кубического уравнения. Он же впервые нашел выражения для cos n a и sin n a , которые позже были получены более простым путем из формулы Муавра.

    Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:

    Формулы универсальной подстановки.

    Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg (a /2), это бывает полезно при решении некоторых уравнений:

    Формулы преобразования сумм в произведения и произведений в суммы.

    До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:

    2 sin a sin b = cos (a – b ) – cos (a + b );

    2 cos a cos b = cos (a – b ) + cos (a + b );

    2 sin a cos b = sin (a – b ) + sin (a + b ).

    Формулы для функций тангенса и котангенса можно получить из вышеприведенных.

    Формулы понижения степени.

    Из формул кратного аргумента выводятся формулы:

    sin 2 a = (1 – cos 2a )/2; cos 2 a = (1 + cos 2a )/2;
    sin 3 a = (3 sin a – sin 3a )/4; cos 3 a = (3 cosa + cos 3 a )/4.

    С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.

    Производные и интегралы тригонометрических функций
    (sin x )` = cos x ; (cos x )` = –sin x ;
    (tg x )` = ; (ctg x )` = – ;
    т sin x dx = –cos x + C ; т cos x dx = sin x + C ;
    т tg x dx = –ln |cos x | + C ; т ctg x dx = ln |sin x | + C ;

    Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.

    Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.

    Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x :

    Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x :

    при |x| p /2;

    при 0 x| p

    (B n – числа Бернулли).

    Функции sin x и cos x могут быть представлены в виде бесконечных произведений:

    Тригонометрическая система 1, cos x , sin x , cos 2x , sin 2x , ¼, cos nx , sin nx , ¼, образует на отрезке [–p , p ] ортогональную систему функций, что дает возможность представления функций в виде тригонометрических рядов.

    определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x , если вместо x поставить z :

    Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.

    Тангенс и котангенс определяются формулами:

    Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n , n = 0, ±1, ±2,…

    Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,

    sin (–z ) = –sin z ,

    cos (–z ) = cos z ,

    tg (–z ) = –tg z ,

    ctg (–z ) = –ctg z,

    т.е. четность и нечетность сохраняются. Сохраняются и формулы

    sin (z + 2p ) = sin z , (z + 2p ) = cos z , (z + p ) = tg z , (z + p ) = ctg z ,

    т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.

    Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:

    Обратно, e iz выражается через cos z и sin z по формуле:

    e iz = cos z + i sin z

    Эти формулы носят название формул Эйлера . Леонард Эйлер вывел их в 1743.

    Тригонометрические функции также можно выразить через гиперболические функции:

    z = –i sh iz , cos z = ch iz, z = –i th iz.

    где sh, ch и th – гиперболические синус, косинус и тангенс.

    Тригонометрические функции комплексного аргумента z = x + iy , где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:

    sin (x + iy ) = sin x ch y + i cos x sh y ;

    cos (x + iy ) = cos x ch y + i sin x sh y .

    Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:

    Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f (x ) = a , где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.

    Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а . Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.

    Обратные тригонометрические функции.

    Для sin х , cos х , tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x »), arcos x , arctg x и arcctg x . По определению, arcsin х есть такое число у, что

    sin у = х .

    Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.

    Если отразить sin х , cos х , tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.

    Чтобы избавиться от неоднозначности, из графика каждой тригонометрической функции выделяется участок кривой шириной p , при этом нужно, чтобы между аргументом и значением функции соблюдалось взаимно однозначное соответствие. Выбираются участки около начала координат. Для синуса в качестве «интервала взаимной однозначности» берется отрезок [–p /2, p /2], на котором синус монотонно возрастает от –1 до 1, для косинуса – отрезок , для тангенса и котангенса соответственно интервалы (–p /2, p /2) и (0, p ). Каждая кривая на интервале отражается относительно биссектрисы и теперь можно определить обратные тригонометрические функции. Например, пусть задано значение аргумента x 0 , такое, что 0 Ј x 0 Ј 1. Тогда значением функции y 0 = arcsin x 0 будет единственное значение у 0 , такое, что –p /2 Ј у 0 Ј p /2 и x 0 = sin y 0 .

    Таким образом, арксинус – это функция агсsin а , определенная на отрезке [–1, 1] и равная при каждом а такому значению a , –p /2 a p /2, что sin a = а. Ее очень удобно представлять с помощью единичной окружности (рис. 15). При |а| 1 на окружности есть две точки с ординатой a , симметричные относительно оси у. Одной из них отвечает угол a = arcsin а , а другой – угол p - а. С учетом периодичности синуса решение уравнения sin x = а записывается следующим образом:

    х = (–1) n arcsin a + 2p n ,

    где n = 0, ±1, ±2,...

    Так же решаются другие простейшие тригонометрические уравнения:

    cos x = a , –1 = a = 1;

    x = ±arcos a + 2p n ,

    где п = 0, ±1, ±2,... (рис. 16);

    tg х = a ;

    x = arctg a + p n,

    где п = 0, ±1, ±2,... (рис. 17);

    ctg х = а ;

    х = arcctg a + p n,

    где п = 0, ±1, ±2,... (рис. 18).

    Основные свойства обратных тригонометрических функций:

    arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [–p /2, p /2], монотонно возрастающая функция;

    arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – ; монотонно убывающая функция;

    arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (–p /2, p /2); монотонно возрастающая функция; прямые у = –p /2 и у = p /2 – горизонтальные асимптоты;


    arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.

    ,

    Для любого z = x + iy , где x и y – действительные числа, имеют место неравенства

    ½|e\e y e -y | ≤|sin z |≤½(e y +e -y),

    ½|e y e -y | ≤|cos z |≤½(e y +e -y ),

    из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x )

    |sin z | » 1/2 e |y| ,

    |cos z | » 1/2 e |y| .

    Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции Евклида , Архимеда , Аполлония Пергского и других, однако эти соотношения не являлись самостоятельным объектом исследования, так что тригонометрические функции как таковые ими не изучались. Они рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 – 2-я половина 3 вв. до н. э.), Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10 –6 . Это была первая таблица синусов. Как отношение функция sin a встречается уже у Ариабхаты (конец 5 в.). Функции tg a и ctg a встречаются у аль-Баттани (2-я половина 9 – начало 10 вв.) и Абуль-Вефа (10 в.), который употребляет также sec a и cosec a . Ариабхата знал уже формулу (sin 2 a + cos 2 a ) = 1, а также формулы sin и cos половинного угла, с помощью которых построил таблицы синусов для углов через 3°45"; исходя из известных значений тригонометрических функций для простейших аргументов. Бхаскара (12 в.) дал способ построения таблиц через 1 с помощью формул сложения. Формулы преобразования суммы и разности тригонометрических функций различных аргументов в произведение выводились Региомонтаном (15 в.) и Дж. Непером в связи с изобретением последним логарифмов (1614). Региомонтан дал таблицу значений синуса через 1". Разложение тригонометрических функций в степенные ряды получено И.Ньютоном (1669). В современную форму теорию тригонометрических функций привел Л.Эйлер (18 в.). Ему принадлежат их определение для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией и ортогональности системы синусов и косинусов.

    Тригонометрические функции возникли в Древней Греции в связи с исследованиями в астрономии и геометрии. Отношения сторон в прямоугольном треугольнике, которые по существу и есть тригонометрические функции, встречаются уже в III в. до н. э. в работах Евклида, Архимеда, Аполлония Пергского и других. Современную форму теории тригонометрических функций и вообще тригонометрии придал Л. Эйлер. Ему принадлежат определения тригонометрических функций и принятая в наши дни символика.

    Тригонометрические функции (от греческих слов trigonon - «треугольник» и metreo- «измеряю») -один из важнейших классов функций.

    Чтобы определить тригонометрические функции, рассмотрим тригонометрический круг (окружность) с радиусом 1 и центром в начале координат (рис. 1). Если φ - угол между радиусами ОС и OA, выраженный в радианах, 0 ≤ φ ≤ 2π (угол отсчитывается в направлении от ОС к ОА), то координаты точки А называются соответственно косинусом и синусом угла φ и обозначаются как х = cos φ и н = sin φ. Отсюда ясно, что |cos φ| ≤ 1, |sin φ| ≤ 1 и cos 2 φ + sin 2 φ = 1.

    Для острых углов (0 < φ < π/2) тригонометрические функции cos φ и sin φ можно рассматривать как отношения катета прямоугольного треугольника (прилежащего к углу и противолежащего углу соответственно) к гипотенузе (рис. 2), длина которой уже не обязательно равна единице. Исходя из этого определения, составим таблицу для значений тригонометрических функций некоторых углов; кроме того, ясно, что

    cos 0 = sin π/2 = 1 и cos π/2 = sin 0 = 0.

    Чтобы построить графики тригонометрических функций при 0 ≤ φ ≤ 2π, поступим следующим образом. Разделим тригонометрическую окружность на 16 равных частей и рядом разместим систему координат, как показано на рис. 3, где отрезок длиной 2π на оси Оφ также разделен на 16 равных частей. Проводя прямые линии параллельно оси Оφ через точки деления окружности, мы на пересечении этих прямых с перпендикулярами, восставленными из соответствующих точек деления отрезка на оси Оφ, получаем точки, координаты которых равны синусам соответствующих углов (рис. 3); отметим, что имеют место следующие приближенные равенства:

    sin π/8 ≈ 0,4, sin π/4 ≈ 0,7, sin 3π/8 ≈ 0,9.

    Если взять, скажем, не 16, а 32, 64 и т.д. точек, то можно построить сколь угодно много точек, лежащих на графике функции у = sin φ. Проводя через них плавную кривую, мы получим достаточно удовлетворительный график функции у = sin φ на отрезке . Для того чтобы получить функцию у = sin φ, определенную на всей числовой прямой, сначала определяют ее на всех отрезках вида , n ≥ 1 - целое, т.е. полагая, что ее значения в точках φ, φ + 2π, φ + 4π, ... равны (0 ≤ φ ≤ 2π), а затем для отрицательных φ используют равенство sin (-φ) = -sin φ. Проделав все это, мы получим график, показанный на рис. 4. В итоге получается периодическая (с периодами 2 πn, n-целое и n ≠ 0), нечетная функция у = sin φ, которая определена при всех действительных значениях φ; ее область значений [-1, 1].

    При определении функции у = cos φ (для всех φ) заметим сначала, что cos φ = sin (π/2 - φ) для 0 ≤ φ ≤ π/2, которое следует непосредственно из определения тригонометрических функций sin φ и cos φ. Так как функция у = sin φ уже нами определена при всех φ, мы положим по определению, что это равенство и задает функцию у = cos φ при всех φ. Из этого определения нетрудно получить и график функции у = cos φ, которая, очевидно, будет четной и периодической, так как ее график получается из графика функции у = sin φ путем параллельного переноса влево на отрезок длиной π/2, как единого целого графика функции у = sin φ (рис. 5).

    Простейший анализ (с помощью графика) показывает, что помимо отмеченной выше справедливы также следующие так называемые формулы приведения:

    sin (φ + nπ) = ± sin φ, cos (φ + nπ) = ± соs φ,

    sin (φ + nπ/2) = ± cos φ, cos (φ + nπ/2) = ∓ sin φ,

    В формулах первой строки n может быть любым целым числом, причем верхний знак соответствует n = 2k, нижний знак - значению n = 2k + 1, а в формулах второй строки n может быть только нечетным числом, причем верхний знак берется при n = 4k + 1, а нижний - при n = 4k - 1, k - целое.

    С помощью основных тригонометрических функций sin φ и cos φ можно определить другие тригонометрические функции - тангенс и котангенс:

    tg φ = sin φ / cos φ,

    ctg φ = cos φ / sin φ;

    при этом тангенс определен только для таких значений φ, для которых cos φ ≠ 0, т. е. для φ ≠ π/2 + nπ, n = 0, ±1, + 2, ..., а функция котангенс - для таких φ, для которых sin φ ≠ 0, т.е. φ ≠ nπ, n = 0, ±1, ±2, .... Эти функции для острых углов могут быть также представлены геометрически направленными отрезками прямых (рис. 6):

    tg φ = |AВ|, ctg φ = |CD|.

    Подобно синусу и косинусу, функции тангенс и котангенс для острых углов могут рассматриваться как отношения катетов: противолежащего к прилежащему для тангенса и прилежащего к противолежащему для котангенса. Графики функций у = tg φ и у = ctg φ показаны на рис. 7 и 8; как видно, эти функции являются нечетными, периодическими и имеют в качестве периода числа nπ, n = +1, ±2, ....

    Важнейшие тригонометрические формулы - формулы сложения:

    sin (φ 1 ± φ 2) = sin φ 1 cos φ 2 ± cos φ 1 sin φ 2 ,

    cos (φ 1 ± φ 2) = cos φ 1 cos φ 2 ∓ sin φ 1 sin φ 2 ,

    tg(φ 1 ± φ 2) = (tg φ 1 ± tg φ 2)/(1 ∓ tg φ 1 tg φ 2)

    знаки в левых и правых частях формул согласованы, т.е. верхнему знаку слева соответствует верхний знак справа. Из них, в частности, выводятся формулы для кратных аргументов:

    sin 2φ = 2 sin φ cos φ,

    cos 2φ = cos 2 φ - sin 2 φ,

    tg 2 φ = 2tg φ (1 - tg 2 φ).

    Сумму и разность тригонометрических функций можно представить в виде произведения тригонометрических функций (знаки в первой и четвертой формулах согласованы):

    sin φ 1 sin φ 2 = 2sin ((φ 1 ± φ 2)/2) cos ((φ 1 ∓ φ 2)/2),

    cos φ 1 + cos φ 2 = 2cos ((φ 1 + φ 2)/2) cos ((φ 1 - φ 2)/2),

    cos φ 1 - cos φ 2 = -2sin ((φ 1 + φ 2)/2) sin ((φ 1 - φ 2)/2),

    tg φ 1 ± tg φ 2 = sin (φ 1 ± φ 2)/(cos φ 1 cos φ 2).

    Произведение тригонометрических функций выражается через сумму следующим образом:

    sin φ 1 cos φ 2 = 1/2 ,

    sin φ 1 sin φ 2 = 1/2 ,

    cos φ 1 cos φ 2 = 1/2 .

    Производные тригонометрических функций выражаются через тригонометрические функции (здесь и всюду в дальнейшем мы заменим переменную φ на х):

    (sin х)" = cos х, (cos х)" = -sin х,

    (tgx)" = 1/cos 2 x, (ctgx)"= -1/sin 2 x.

    При интегрировании тригонометрических функций получаются тригонометрические функции или их логарифмы (0 < х < π/2, С - абсолютная постоянная):

    ∫sin x dx = -cos х + С, ∫cos x dx = sin x + С,

    ∫tg xdx = -ln cos x + C, ∫ctg x dx = ln sin x + С.

    Основные тригонометрические функции u = cos х и v = sin х, как мы видели, связаны следующими соотношениями:

    и" = -v, v" = u.

    Дифференцируя вторично эти равенства, получаем:

    и" = -v"= -u, v" = u"= -V.

    Таким образом, функции u и v от переменной х могут рассматриваться как решения одного и того же (дифференциального) уравнения у" + у = 0.

    Это уравнение, а точнее - его обобщение, содержащее положительную постоянную k 2 , у" + k 2 у = 0 (решениями которого, в частности, служат функции cos kx и sin kx), постоянно встречается при изучении колебаний, т.е. при изучении конструкций механизмов, совершающих или производящих колебательные движения.

    Функция cos x может быть представлена в виде бесконечного ряда 1 - х 2 /2! + х 4 /4! - х 6 /6!.... Если взять несколько первых членов этого ряда, мы получим приближения функции cos x с помощью многочленов. На рис. 9 показано, как графики этих многочленов с ростом их степени все лучше приближают функцию cosx.

    Название «синус» происходит от латинского sinus - «перегиб», «пазуха» - представляет собой перевод арабского слова «джива» («тетива лука»), которым обозначали синус индийские математики. Латинское слово tangens означает «касательная» (см. рис. 6; АВ-касательная к окружности). Названия «косинус» и «котангенс» представляют собой сокращения терминов complementi sinus, complementi tangens («синус дополнения», «тангенс дополнения»), выражающих тот факт, что cos φ и ctg φ равны соответственно синусу и тангенсу аргумента, дополнительного к φ до π/2: cos φ = sin (π/2 - φ), ctg φ = tg(π/2 - φ).


    © 2024
    artistexpo.ru - Про дарение имущества и имущественных прав