16.10.2019

Как определить валентность вещества по таблице менделеева. Валентность. Определение валентности. Элементы с постоянной валентностью


Атомы химических элементов могут образовывать различное число связей. Эта способность имеет специальное название – валентность. Давайте разберемся, как определить валентность по таблице Менделеева, узнаем, в чем заключается ее отличие от степени окисления, увидим закономерности, характерные для , углерода, фосфора, цинка, научимся находить валентность химических элементов.

Вконтакте

Основные сведения

Валентность – это возможность атомов различных химических элементов образовывать связи между собой. Другими словами можно сказать, что это способность атома присоединить к себе определенное количество других атомов.

Важно! Это не всегда постоянное число для одного и того же элемента. В разных соединениях элемент может обладать различными значениями.

Определение по таблице Д.И. Менделеева

Для определения этой способности атома по необходимо знать, что такое группы и подгруппы периодической таблицы .

Это вертикальные столбцы, которые делят все элементы по определенному признаку. В зависимости от признака, выделяют подразделения элементов.

Этими столбцами элементы делятся на тяжелые и легкие элементы, а также подгруппы — галогены, инертные газы и тому подобное.

Итак, для определения способности элемента образовывать связи нужно руководствоваться двумя правилами:

  • Высшая валентность элемента равна номеру его группы.
  • Низшая валентность находится как разница между числом 8 и номером группы, в которой расположен данный элемент.

Например, фосфор проявляет высшую валентность V – P 2 O 5 и низшую (8-5)=3– PF 3 .

Стоит также отметить несколько основных характеристик и особенностей при определении этого показателя:

  • Валентность водорода всегда I – H 2 O, HNO 3 , H 3 PO 4 .
  • Валентность всегда равна II – CO 2 , SO 3 .
  • У металлов, которые расположены в главной подгруппе, этот показатель всегда равен номеру группы – Al 2 O 3 , NaOH, KH.
  • Для неметаллов чаще всего проявляются только две валентности – высшая и низшая.

Также существуют элементы, у которых может быть 3 или 4 разных значений этого показателя. К ним относятся хлор, бор, йод, хром, сера и другие. Например, хлор обладает валентностью I, III, V, VII – HCl, ClF 3 ,ClF 5 ,HClO 4 соответственно.

Определение по формуле

Для определения по формуле можно воспользоваться несколькими правилами:

  1. Если известна валентность (V) одного из элементов в двойном соединении: допустим, есть соединение углерода и кислорода СО 2 , при этом мы знаем, что валентность кислорода всегда равна II, тогда можем воспользоваться таким правилом: произведение числа атомов на его V одного элемента должно равняться произведению числа атомов другого элемента на его V. Таким образом, валентность можно найти так – 2×2 (в молекуле 2 атома кислорода с V= 2), то есть валентность углерода равняется 4 . Рассмотрим еще несколько примеров: P 2 O 5 – тут валентность фосфора = (5*2)/2 = 5. HCl – валентность хлора будет равна I, так как в этой молекуле 1 атом водорода, и V= 1.
  2. Если известна валентность нескольких элементов, которые составляют группу: в молекуле гидроксида натрия NaOH валентность кислорода равняется II, а валентность водорода – I, таким образом группа -OH обладает одной свободной валентностью, так как кислород присоединил только один атом водорода и еще одна связь свободна. К ней и присоединится натрий. Можно сделать вывод, что натрий – одновалентный элемент.

Разница между степенью окисления и валентностью

Очень важно понимать принципиальную разницу между этими понятиями. Степень окисления – это условный электрический заряд , которым обладает ядро атома, в то время как валентность – это количество связей, которые может установить ядро элемента.

Рассмотрим подробнее, что такое степень окисления. Согласно современной теории о строении атома, ядро элемента состоит из положительно заряженных протонов и нейтронов без заряда, а вокруг него находятся электроны с отрицательным зарядом, которые уравновешивают заряд ядра и делают элемент электрически нейтральным.

В случае, если атом устанавливает связь с другим элементом, он отдает или принимает электроны , то есть выходит из состоянии баланса и начинает обладать электрическим зарядом. При этом если атом отдает электрон, он становится положительно заряженным, а если принимает – отрицательным.

Внимание! В соединении хлора и водорода HCl водород отдает один электрон и приобретает заряд +1, а хлор принимает электрон и становится отрицательным -1. В сложных соединениях, HNO 3 и H 2 SO 4 , степени окисления будут такими – H +1 N +5 O 3 -2 и H 2 +1 S +6 O 4 -2 .

Сравнивая два этих определения, можно сделать вывод, что валентность и степень окисления часто совпадают: валентность водорода +1 и валентность I, степень окисления кислорода -2 и V II, но очень важно помнить, что это правило выполняется не всегда !

В органическом соединении углерода под названием формальдегид и формулой HCOH у углерода степень окисления 0, но он обладает V, равной 4. В перекиси водорода H 2 O 2 у кислорода степень окисления +1, но V остается равной 2. Поэтому не следует отождествлять два этих понятия, так как в ряде случаев это может привести к ошибке.

Валентности распространенных элементов

Водород

Один из самых распространенных элементов во вселенной, встречается во многих соединениях и всегда обладает V=1 . Это связано со строением его внешней электронной орбитали, на которой у водорода находится 1 электрон.

На первом уровне может находиться не более двух электронов одновременно, таким образом, водород может либо отдать свой электрон и образовать связь (электронная оболочка останется пустой), либо принять 1 электрон, также образовав новую связь (электронная оболочка полностью заполнится).

Пример: H 2 O – 2 атома водорода с V=1 связаны с двухвалентным кислородом; HCl – одновалентные хлор и водород; HCN – синильная кислота, где водород также проявляет V, равную 1.

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так:валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2.Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

Mn O

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

2х = 14,

х = 7.

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Химическая формула отражает состав (структуру) химического соединения или простого вещества. Например, Н 2 О - два атома водорода соединены с атомом кислорода. Химические формулы содержат также некоторые сведения о структуре вещества: например, Fe(OH) 3 , Al 2 (SO 4) 3 - в этих формулах указаны некоторые устойчивые группировки (ОН, SO 4), которые входят в состав вещества - его молекулы, формульной или структурной единицы (ФЕ или СЕ).

Молекулярная формула указывает число атомов каждого элемента в молекуле. Молекулярная формула описывает только вещества с молекулярным строением (газы, жидкости и некоторые твердые вещества). Состав вещества с атомной или ионной структурой можно описать только символами формульных единиц.

Формульные единицы указывают простейшее соотношение между числом атомов разных элементов в веществе. Например, формульная единица бензола  СН, молекулярная формула  С 6 Н 6 .

Структурная (графическая) формула указывает порядок соединения атомов в молекуле (а также в ФЕ и СЕ) и число связей между атомами.

Рассмотрение таких формул привело к представлению о валентности (valentia - сила) - как о способности атома данного элемента присоединять к себе определенное число других атомов. Можно выделить три вида валентности: стехиометрическую (включая степень окисления), структурную и электронную.

Стехиометрическая валентность. Количественный подход к определению валентности оказался возможным после установления понятия «эквивалент» и его определения по закону эквивалентов. Основываясь на этих понятиях можно ввести представление о стехиометрической валентности - это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме. Эквиваленты определяются по количеству атомов водорода, то и V стх фактически означает число атомов водорода (или эквивалентных ему частиц), с которыми взаимодействует данный атом.

V стх = Z B или V стх = . (1.1)

Например, в SO 3 ( S= +6), Z B (S) равен 6 V стх (S) = 6.

Эквивалент водорода равен 1, поэтому для элементов в приведенных ниже соединениях Z B (Cl) = 1, Z B (О) =2, Z B (N) = 3, а Z B (C) = 4. Численное значение стехиометрической валентности принято обозначать римскими цифрами:

I I I II III I IV I

HCl, H 2 O, NН 3 , CH 4 .

В тех случаях, когда элемент не соединяется с водородом, валентность искомого элемента определяется по элементу, валентность которого известна. Чаще всего ее находят по кислороду, поскольку валентность его в соединениях обычно равна двум. Например, в соединениях:

II II III II IV II

CaO Al 2 O 3 CО 2 .

При определении стехиометрической валентности элемента по формуле бинарного соединения следует помнить, что суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Зная валентность элементов, можно составить химическую формулу вещества. При составлении химических формул можно соблюдать следующий порядок действий:

1. Пишут рядом химические символы элементов, которые входят в состав соединения: KO AlCl AlO ;

2. Над символами химических элементов проставляют их валентность:

I II III I III II

3. Используя выше сформулированное правило, определяют наименьшее общее кратное чисел, выражающих стехиометрическую валентность обоих элементов (2, 3 и 6, соответственно).

    Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы:

I II III I III II

K 2 O AlCl 3 Al 2 O 3 .

Пример 1. Составить формулу оксида хлора, зная, что хлор в нем семивалентен, а кислород - двухвалентен.

Решение. Находим наименьшее кратное чисел 2 и 7 - оно равно 14. Разделив наименьшее общее кратное на стехиометрическую валентность соответствующего элемента, находим индексы: для атомов хлора 14/7 = 2, для атомов кислорода 14/2 = 7.

Формула оксида -Cl 2 O 7 .

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком "плюс" (для металла или более электроположительного элемента в молекуле) или “минус”.

 = ±V стх. (1.2)

w определяется через V стх, следовательно через эквивалент, и это означает, что w(Н) = ±1; далее опытным путем могут быть найдены w всех других элементов в различных соединениях. В частности, важно, что ряд элементов имеют всегда или почти всегда постоянные степени окисления.

Полезно помнить следующие правила определения степеней окисления.

1. w(Н) = ±1 (. w = +1 в Н 2 О, НCl; . w = –1 в NaH, CaH 2);

2. F (фтор) во всех соединениях имеет w = –1, остальные галогены с металлами, водородом и другими более электроположительными элементами тоже имеют w = –1.

3. Кислород в обычных соединения имеет. w = –2 (исключения – пероксид водорода и его производные – Н 2 О 2 или BaO 2 , в которых кислород имеет степень окисления –1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2).

4. Щелочные (Li – Fr) и щелочно-земельные (Ca - Ra) металлы всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно;

5. Al, Ga, In, Sc, Y, La и лантаноиды (кроме Се) – w = +3.

6. Высшая степень окисления элемента равна номеру группы периодической системы, а низшая = (№ группы - 8). Например, высшая w (S) = +6 в SO 3 , низшая w = -2 в Н 2 S.

7. Степени окисления простых веществ приняты равными нулю.

8. Степени окисления ионов равны их зарядам.

9. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду. Это можно использовать для определения неизвестной степени окисления по известным и составления формулы многоэлементных соединений.

Пример 2. Определить степень окисления хрома в солиK 2 CrO 4 и в ионеCr 2 O 7 2 - .

Решение. Принимаемw(К) = +1;w(О) =-2. Для структурной единицыK 2 CrO 4 имеем:

2 . (+1) + Х + 4 . (-2) = 0, отсюда Х =w(Сr) = +6.

Для иона Cr 2 O 7 2 - имеем: 2 . Х + 7 . (-2) =-2, Х =w(Cr) = +6.

То есть степень окисления хрома в обоих случаях одинакова.

Пример 3. Определить степень окисления фосфора в соединенияхP 2 O 3 иPH 3 .

Решение. В соединенииP 2 O 3 w(О) =-2. Исходя из того, что алгебраическая сумма степеней окисления молекулы должна быть равной нулю, находим степень окисления фосфора: 2 . Х + 3 . (-2) = 0, отсюда Х =w(Р) = +3.

В соединении PH 3 w(Н) = +1, отсюда Х + 3.(+1) = 0. Х =w(Р) =-3.

Пример 4. Напишите формулы оксидов, которые можно получить при термическом разложении перечисленных ниже гидроксидов:

H 2 SiO 3 ; Fe(OH) 3 ; H 3 AsO 4 ; H 2 WO 4 ; Cu(OH) 2 .

Решение. H 2 SiO 3 -определим степень окисления кремния:w(Н) = +1,w(О) =-2, отсюда: 2 . (+1) + Х + 3 . (-2) = 0.w(Si) = Х = +4. Составляем формулу оксида-SiO 2 .

Fe(OH) 3 -заряд гидроксогруппы равен-1, следовательноw(Fe) = +3 и формула соответствующего оксидаFe 2 O 3 .

H 3 AsO 4 -степень окисления мышьяка в кислоте: 3 . (+1) +X+ 4 . (-2) = 0.X=w(As) = +5. Таким образом, формула оксида-As 2 O 5 .

H 2 WO 4 -w(W) в кислоте равна +6, таким образом формула соответствующего оксида-WO 3 .

Cu(OH) 2 -так как имеется две гидроксогруппы, заряд которой равен-1, следовательноw(Cu) = +2 и формула оксида -CuO.

Большинство элементов имеют по несколько степеней окисления.

Рассмотрим, как с помощью таблицы Д.И. Менделеева можно определить основные степени окисления элементов.

Устойчивые степени окисления элементов главных подгрупп можно определять по следующим правилам:

1. У элементов I-III групп существуют единственные степени окисления - положительные и равные по величине номерам групп (кроме таллия, имеющего w = +1 и +3).

У элементов IV-VI групп, кроме положительной степени окисления, соответствующей номеру группы, и отрицательной, равной разности между числом 8 и номером группы, существуют еще промежуточные степени окисления, обычно отличающиеся между собой на 2 единицы. Для IV группы степени окисления, соответственно, равны +4, +2, -2, -4; для элементов V группы соответственно -3, -1 +3 +5; и для VI группы - +6, +4, -2.

3. У элементов VII группы существуют все степени окисления от +7 до -1, различающиеся на две единицы, т.е. +7,+5, +3, +1 и -1. В группе галогенов выделяется фтор, который не имеет положительных степеней окисления и в соединениях с другими элементами существует только в одной степени окисления -1. (Имеется несколько соединений галогенов с четными степенями окисления: ClO, ClO 2 и др.)

У элементов побочных подгрупп нет простой связи между устойчивыми степенями окисления и номером группы. У некоторых элементов побочных подгрупп устойчивые степени окисления следует просто запомнить. К таким элементам относятся:

Cr (+3 и +6), Mn (+7, +6, +4 и +2), Fe, Co и Ni (+3 и +2), Cu (+2 и +1), Ag (+1), Au (+3 и +1), Zn и Cd (+2), Hg (+2 и +1).

Для составления формул трех- и многоэлементных соединений по степеням окисления необходимо знать степени окисления всех элементов. При этом количество атомов элементов в формуле определяется из условия равенства суммы степеней окисления всех атомов заряду формульной единицы (молекулы, иона). Например, если известно, что в незаряженной формульной единице имеются атомы K, Cr и О со степенями окисления равными +1, +6 и -2 соответственно, то этому условию будут удовлетворять формулы K 2 CrO 4 , K 2 Cr 2 O 7 , K 2 Cr 3 O 10 и многие другие; аналогично этому иону с зарядом -2, содержащему Cr +6 и O - 2 будут соответствовать формулы CrO 4 2 - , Cr 2 O 7 2 - , Cr 3 O 10 2 - , Cr 4 O 13 2 - и т.д.

3. Электронная валентность V ‑ число химических связей, образуемых данным атомом.

Например, в молекуле H 2 O 2 Н ¾ О

V стх (O) = 1, V к. ч.(O) = 2, V .(O) = 2

То есть, имеются химические соединения, в которых стехиометрическая и электронная валентности не совпадают; к ним, например, относятся и комплексные соединения.

Координационная и электронная валентности более подробно рассматриваются в темах “Химическая связь” и “Комплексные соединения”.

Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.

Валентности постоянные и переменные

Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.

В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.

Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.

Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.

В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.

Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:

  • Li, Na, K, F — одновалентны;
  • Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
  • B, Al и Ga — трехвалентны.

Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).

Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III, для N — IV, а для фтора — I.

Минимальное значение валентности всегда соответствует разнице между числом 8 и номером группы (правило 2).

Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.

Определение валентности в бинарном соединении

Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.

Случай первый:

Случай второй:

Определение валентности по формуле трехэлементной частицы.

Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения K2Cr2O7.

Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.

Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».

Таблица Дмитрия Ивановича Менделеева – это многофункциональный справочный материал, по которому дозволено узнать самые нужные данные о химических элементах. Самое основное – знать основные тезисы ее «чтения», то есть надобно уметь положительно пользоваться этим информационным материалом, что послужит красивым подспорьем для решения всяких задач по химии. Тем больше что таблица является разрешенной на всех видах контроля познаний, включая даже ЕГЭ.

Вам понадобится

  • Таблица Д.И.Менделеева, ручка, бумага

Инструкция

1. Таблица представляет собой конструкцию, в которой расположены химические элементы по своим тезисам и законам. То есть, дозволено сказать, что таблица – это многоэтажный «дом», в котором «живут» химические элементы, причем всякий их них имеет свою собственную квартиру под определенным номером. По горизонтали располагаются «этажи» – периоды, которые могут быть малые и огромные. Если период состоит из 2-х рядов (что указано сбоку нумерацией), то такой период именуется огромным. Если он имеет только один ряд, то именуется малым.

2. Также таблица поделена на «подъезды» – группы, которых каждого восемь. Как в любом подъезде квартиры находятся слева и справа, так и тут химические элементы располагаются по такому же тезису. Только в данном варианте их размещение неравномерно – с одной стороны огромнее элементов и тогда говорят о основной группе, с иной – поменьше и это свидетельствует о том, что группа побочная.

3. Валентность – это способность элементов образовывать химические связи. Существует валентность непрерывная, которая не меняется и переменная, имеющая разное значение в зависимости от того, в состав какого вещества входит элемент. При определении валентности по таблице Менделеева нужно обратить внимание на такие колляции: № группы элементы и ее тип (то есть основная либо побочная группа). Непрерывная валентность в этом случае определяется по номеру группы основной подгруппы. Дабы узнать значение переменной валентности (если таковая есть, причем, традиционно у неметаллов), то необходимо из 8 (каждого 8 групп – отсель такая цифра) вычесть № группы, в которой располагается элемент.

4. Пример № 1. Если посмотреть на элементы первой группы основной подгруппы (щелочные металлы), то дозволено сделать итог, что все они имеют валентность, равную I (Li, Na, К, Rb, Cs, Fr).

5. Пример № 2. Элементы 2-й группы основной подгруппы (щелочно-земельные металлы) соответственно имеют валентность II (Be, Mg, Ca, Sr, Ba, Ra).

6. Пример № 3. Если говорить о неметаллах, то скажем, Р (фосфор) находится в V группе основной подгруппы. Отсель его валентность будет равна V. Помимо этого фосфор имеет еще одно значение валентности, и для ее определения нужно исполнить действие 8 – № элемента. Значит, 8 – 5 (номер группы фосфора) = 3. Следственно, вторая валентность фосфора равна III.

7. Пример № 4. Галогены находятся в VII группе основной подгруппы. Значит, их валентность будет равна VII. Впрочем рассматривая, что это неметаллы, то надобно произвести арифметическое действие: 8 – 7 (№ группы элемента) = 1. Следственно, иная валентность галогенов равна I.

8. Для элементов побочных подгрупп (а к ним относятся только металлы) валентность необходимо запоминать, тем больше что в большинстве случае она равна I, II, реже III. Также придется заучить валентности химических элементов, которые имеют больше 2-х значений.

Со школы либо даже прежде весь знает, всё вокруг, включая и нас самих, состоит их атомов – наименьших и неделимых частиц. Вследствие способности атомов соединяться друг с ином, разнообразие нашего мира громадно. Способность эта атомов химического элемента образовывать связи с другими атомами называют валентностью элемента .

Инструкция

1. Представление валентности вошло в химию в девятнадцатом веке, тогда за её единицу была принята валентность атома водорода. Валентность иного элемента может быть определена как число атомов водорода, которое присоединяет к себе один атом иного вещества. Подобно валентности по водороду определяется валентность по кислороду, которая, как водится, равна двум и, значит, дозволяет определить валентность других элементов в соединениях с кислородом несложными арифметическими действиями. Валентность элемента по кислороду равняется удвоенному числу атомов кислорода, которое может присоединить один атом данного элемента .

2. Для определения валентности элемента дозволено воспользоваться и формулой. Вестимо, что существует определенное соотношение между валентностью элемента , его равнозначной массой и молярной массой его атомов. Связь между этими качествами выражается формулой: Валентность = Молярная масса атомов/Эквивалентная масса. Потому что равнозначная масса – это то число, которое нужно для замещения одного моля водорода либо для реакции с одним молем водорода, то чем огромнее молярная масса в сопоставлении с массой равнозначной, тем большее число атомов водорода может заместить либо присоединить к себе атом элемента , а значит тем выше валентность.

3. Связь между химическими элемента ми имеет разную природу. Это может быть ковалентная связь, ионная, металлическая. Для образования связи атому нужно иметь: электрический заряд, неспаренный валентный электрон, свободную валентную орбиталь либо неподеленную пару валентных электронов. Совместно эти особенности определяют валентное состояние и валентные способности атома.

4. Зная число электронов атома, которое равно порядковому номеру элемента в Периодической системе элементов, руководствуясь тезисами наименьшей энергии,тезисом Паули и правилом Хунда дозволено возвести электронную конфигурацию атома. Эти построения дозволят проанализировать валентные вероятности атома. Во всех случаях, в первую очередь реализуются вероятности образовывать связи за счет наличия неспаренных валентных электронов, добавочные валентные способности, такие как свободная орбиталь либо неподеленная пара валентных электронов, могут остаться нереализованными, если на это неудовлетворительно энергии.И каждого вышесказанного дозволено сделать итог, что проще каждого определить валентность атома в каком-нибудь соединении, и значительно труднее узнать валентные способности атомов. Однако практика сделает простым и это.

Видео по теме

Совет 3: Как определить валентность химических элементов

Валентность химического элемента – это способность атома присоединять либо замещать определенное число других атомов либо ядерных групп с образованием химической связи. Необходимо помнить, что некоторые атомы одного и того же химического элемента могут иметь различную валентность в различных соединениях.

Вам понадобится

  • таблица Менделеева

Инструкция

1. Водород и кислород принято считать одновалентным и двухвалентным элементами соответственно. Мерой валентности является число атомов водорода либо кислорода, которые элемент присоединяет для образования гидрида либо оксида.Пускай X – элемент, валентность которого необходимо определить. Тогда XHn – гидрид этого элемента, а XmOn – его оксид.Пример: формула аммиака – NH3, тут у азота валентность 3. Натрий одновалентен в соединении Na2O.

2. Для определения валентности элемента необходимо умножить число атомов водорода либо кислорода в соединении на валентность водорода и кислорода соответственно, а после этого поделить на число атомов химического элемента, валентность которого находится.

3. Валентность элемента может быть определена и по иным атомам с вестимой валентностью. В разных соединениях атомы одного и того же элемента могут проявлять разные валентности. Скажем, сера двухвалентна в соединениях H2S и CuS, четырехвалентна в соединениях SO2 и SF4, шестивалентна в соединениях SO3 и SF6.

4. Максимальную валентность элемента считают равной числу электронов во внешней электронной оболочке атома. Максимальная валентность элементов одной и той же группы периодической системы обыкновенно соответствует ее порядковому номеру. К примеру, максимальная валентность атома углерода С должна быть равной 4.

Видео по теме

Для школьников постижение таблицы Менделеева – ужасный сон. Даже тридцать шесть элементов, которые обыкновенно задают преподаватели, оборачиваются часами утомительной зубрежки и головной болью. Многие даже не верят, что выучить таблицу Менделеева реально. Но использование мнемотехники способно гораздо облегчить жизнь школярам.

Инструкция

1. Разобраться в теории и предпочесть необходимую техникуПравила, облегчающие запоминание материала, именуются мнемоническими. Основная их хитрость – создание ассоциативных связей, когда абстрактная информация упаковывается в яркую картинку, звук либо даже запах. Существует несколько мнемонических техник. Скажем, дозволено написать рассказ из элементов запоминаемой информации, поискать созвучные слова (рубидий – рубильник, цезий – Юлий Цезарь), включить пространственное воображение либо легко зарифмовать элементы периодической таблицы Менделеева.

2. Баллада об азотеРифмовать элементы периодической таблицы Менделеева отличнее со смыслом, по определенным знакам: по валентности, скажем. Так, щелочные металлы рифмуются дюже легко и звучат, как песенка: “Литий, калий, натрий, рубидий, цезий франций”. “Магний, кальций, цинк и барий – их валентность равна паре” – неувядающая классика школьного фольклора. На ту же тему: “Натрий, калий, серебро - одновалентное добродушно” и “Натрий, калий и аргентум - навечно одновалентны”. Созидание в различие от зубрежки, которой хватает максимум на пару дней, стимулирует долговременную память. А значит, огромнее сказок про алюминий, стихов про азот и песен о валентности – и запоминание пойдет как по маслу.

3. Кислотный триллерДля упрощения запоминания придумывается история, в которой элементы таблицы Менделеева превращаются в героев, детали пейзажа либо сюжетные элементы. Вот, скажем, каждым знаменитый текст: «Азиат (Азот) стал лить (Литий) воду (Водород)в сосновый Бор (Бор). Но Не он (Неон) был нам надобен, а Магнолия (Магний)». Его дозволено дополнить историей о феррари (сталь – феррум), в которой ехал тайный шпион “Хлор нуль семнадцать” (17 – порядковый номер хлора), дабы поймать маньяка Арсения (мышьяк – арсеникум), у которого было 33 зуба (33 – порядковый номер мышьяка), но внезапно что-то кислое попало ему в рот (кислород), это было восемь отравленных пуль (8 – порядковый номер кислорода)… Продолжать дозволено до бесконечности. Кстати, роман, написанный по мотивам таблицы Менделеева, дозволено пристроить учительнице литературы в качестве экспериментального текста. Ей наверно понравится.

4. Возвести замок памятиЭто одно из наименований достаточно результативной техники запоминания, когда включается пространственное мышление. Секрет ее в том, что все мы можем без труда описать свою комнату либо путь от дома до магазина, школы, института. Для того, дабы запомнить последовательность элементов необходимо поместить их по дороге (либо в комнате), причем представить всякий элемент дюже ясно, зримо, ощутимо. Вот водород – худосочный блондин с вытянутым лицом. Работяга, тот, что кладет плитку – кремний. Группа дворян в драгоценный машине – инертные газы. И, безусловно, продавец воздушных шариков – гелий.

Обратите внимание!
Не необходимо принуждать себя запоминать информацию на карточках. Самое лучшее связать весь элемент с некоторым блестящим образом. Кремний – с Кремниевой долиной. Литий – с литиевыми батарейками в мобильном телефоне. Вариантов может быть уйма. Но комбинация визуального образа, механического запоминания, тактильного ощущения от шероховатой либо, напротив, гладкой глянцевой карточки, поможет без труда поднять самые мельчайшие детали из недр памяти.

Полезный совет
Дозволено нарисовать такие же карточки с информацией об элементах, как были в свое время у Менделеева, но только дополнить их нынешней информацией: числом электронов на внешнем ярусе, скажем. Все, что надобно, это раскладывать их перед сном.

Химия для всякого школьника начинается с таблицы Менделеева и фундаментальных законов. И теснее только потом, уяснив для себя, что же постигает эта трудная наука, дозволено приступать к составлению химических формул. Для грамотной записи соединения необходимо знать валентность атомов, составляющих его.

Инструкция

1. Валентность – способность одних атомов удерживать вблизи себя определенное число других и выражается она числом удерживаемых атомов. То есть, чем мощней элемент, тем огромнее у него валентность .

2. Для примера дозволено применять два вещества – HCl и H2O. Это классно знаменитые каждом соляная кислота и вода. В первом веществе содержится один атом водорода (H) и один атом хлора (Cl). Это говорит о том, в данном соединении они образуют одну связь, то есть удерживают вблизи себя один атом. Следственно, валентность и одного, и иного равна 1. Так же легко определить валентность элементов, составляющих молекулу воды. Она содержит два атома водорода и один атом кислорода. Следственно, атом кислорода образовал две связи для присоединения 2-х водородов, а они, в свою очередь, по одной связи. Значит, валентность кислорода равна 2, а водорода – 1.

3. Но изредка доводится сталкиваться с вещества ми больше трудными по строению и свойствам составляющих их атомов. Существует два типа элементов: с непрерывной (кислород, водород и др.) и непостоянной валентность ю. У атомов второго типа это число зависит от соединения, в состав которого они входят. В качестве примера дозволено привести серу (S). Она может иметь валентности 2, 4, 6 и изредка даже 8. Определить способность таких элементов, как сера, держать вокруг себя другие атомы, немножко труднее. Для этого нужно знать свойства других составляющих вещества .

4. Запомните правило: произведение числа атомов на валентность одного элемента в соединении должна совпадать с таким же произведением для иного элемента. Это дозволено проверить опять обратившись к молекуле воды (H2O):2 (число водорода) * 1 (его валентность ) = 21 (число кислорода) * 2 (его валентность ) = 22 = 2 – значит все определено правильно.

5. Сейчас проверьте данный алгорифм на больше трудном веществе, скажем, N2O5 – оксиде азота. Ранее указывалось, что кислород имеет непрерывную валентность 2, следственно дозволено составить уравнение:2 (валентность кислорода) * 5 (его число) = Х (неведомая валентность азота) * 2 (его число)Путем несложных арифметических вычислений дозволено определить, что валентность азота в составе данного соединения равна 5.

Валентность – это способность химических элементов держать определенное число атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность довольно примитивно.

Инструкция

1. Возьмите на заметку, что обозначается показатель валентности римскими цифрами и ставится над знаком элемента.

2. Обратите внимание: если формула двухэлементного вещества написана верно, то,при умножении числа атомов всякого элемента на его валентность, у всех элементовдолжны получиться идентичные произведения.

3. Примите к сведению, что валентность атомов одних элементов непрерывна, а других – переменна, то есть, имеет качество меняться. Скажем, водород во всех соединениях одновалентен, от того что образует только одну связь. Кислород горазд образовывать две связи, являясь при этом двухвалентным. А вот у серы валентность может быть II, IV либо VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера – элемент с переменной валентностью.

4. Подметьте, что в молекулах водородных соединений вычислить валентность дюже примитивно. Водород неизменно одновалентен, а данный показатель у связанного с ним элемента будет равняться числу атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

5. Запомните основное правило определения валентности: произведение показателя валентности атома какого-нибудь элемента и числа его атомов в какой-нибудь молекуле неизменно равно произведению показателя валентности атома второго элемента и числа его атомов в данной молекуле.

6. Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V – это валентность атомов элементов, а К – число атомов в молекуле. С ее подмогой легко определить показатель валентности всякого элемента, если вестимы остальные данные.

7. Разглядите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, следственно, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Открытие периодического закона и создание упорядоченной системы химических элементов Д.И. Менделеевым стали апогеем становления химии в XIX веке. Ученым был обобщен и классифицирован обширный материал умений о свойствах элементов.

Инструкция

1. В XIX веке не было никаких представлений о строении атома. Открытие Д.И. Менделеева являлось лишь обобщением опытных фактов, но их физический толк длинное время оставался непонятным. Когда возникли первые данные о строении ядра и разделении электронов в атомах, это дозволило взглянуть на периодический закон и систему элементов заново. Таблица Д.И. Менделеева дает вероятность наглядно проследить периодичность свойств элементов, встречающихся в природе.

2. Всякому элементу в таблице присвоен определенный порядковый номер (H – 1, Li – 2, Be – 3 и т.д.). Данный номер соответствует заряду ядра (числу протонов в ядре) и числу электронов, вращающихся вокруг ядра. Число протонов, таким образом, равно числу электронов, и это говорит о том, что в обыкновенных условиях атом электрически нейтрален.

3. Деление на семь периодов происходит по числу энергетических ярусов атома. Атомы первого периода имеют одноуровневую электронную оболочку, второго – двухуровневую, третьего – трехуровневую и т.д. При заполнении нового энергетического яруса начинается новейший период.

4. Первые элементы каждого периода характеризуются атомами, имеющими по одному электрону на внешнем ярусе, – это атомы щелочных металлов. Заканчиваются периоды атомами порядочных газов, имеющими всецело заполненный электронами внешний энергетический ярус: в первом периоде инертные газы имеют 2 электрона, в последующих – 8. Именно по причине схожего строения электронных оболочек группы элементов имеют сходные физико-химические свойства.

5. В таблице Д.И. Менделеева присутствует 8 основных подгрупп. Такое их число обусловлено максимально допустимым числом электронов на энергетическом ярусе.

6. Внизу периодической системы выделены лантаноиды и актиноиды в качестве независимых рядов.

7. С поддержкой таблицы Д.И. Менделеева дозволено пронаблюдать периодичность следующих свойств элементов: радиуса атома, объема атома; потенциала ионизации; силы сродства с электроном; электроотрицательности атома; степени окисления; физических свойств возможных соединений.

8. К примеру, радиусы атомов, если глядеть по периода, уменьшаются слева направо; растут сверху вниз, если глядеть по группы.

9. Отчетливо прослеживаемая периодичность расположения элементов в таблице Д.И. Менделеева осмысленно объясняется последовательным нравом заполнения электронами энергетических ярусов.

Периодический закон, являющийся основой нынешней химии и поясняющий обоснованности метаморфозы свойств химических элементов, был открыт Д.И. Менделеевым в 1869 году. Физический толк этого закона вскрывается при постижении трудного строения атома.


В XIX веке считалось, что ядерная масса является основной колляцией элемента, следственно для систематизации веществ применяли именно ее. Теперь атомы определяют и идентифицируют по величине заряда их ядра (числу протонов и порядковому номеру в таблице Менделеева). Однако, ядерная масса элементов за некоторыми исключениями (скажем, ядерная масса калия поменьше ядерной массы аргона) возрастает соизмеримо их заряду ядра.При увеличении ядерной массы отслеживается периодическое метаморфоза свойств элементов и их соединений. Это металличность и неметалличность атомов, ядерный радиус и объем, потенциал ионизации, сродство к электрону, электроотрицательность, степени окисления, физические свойства соединений (температуры кипения, плавления, плотность), их основность, амфотерность либо кислотность.

Сколько элементов в нынешней таблице Менделеева

Таблица Менделеева графически выражает открытый им периодический закон. В нынешней периодической системе содержится 112 химических элементов (последние – Мейтнерий, Дармштадтий, Рентгений и Коперниций). По последним данным, открыты и следующие 8 элементов (до 120 включительно), но не все из них получили свои наименования, и эти элементы пока еще немного в каких печатных изданиях присутствуют.Всякий элемент занимает определенную клетку в периодической системе и имеет свой порядковый номер, соответствующий заряду ядра его атома.

Как построена периодическая система

Структура периодической системы представлена семью периодами, десятью рядами и восемью группами. Весь период начинается щелочным металлом и заканчивается порядочным газом. Исключения составляют 1-й период, начинающийся водородом, и седьмой незавершенный период.Периоды делятся на малые и огромные. Малые периоды (1-й, 2-й, 3-й) состоят из одного горизонтального ряда, огромные (четвертый, пятый, шестой) – из 2-х горизонтальных рядов. Верхние ряды в огромных периодах именуются четными, нижние – нечетными.В шестом периоде таблицы позже лантана (порядковый номер 57) находятся 14 элементов, схожих по свойствам на лантан, – лантаноидов. Они вынесены в нижнюю часть таблицы отдельной строкой. То же самое относится и к актиноидам, расположенным позже актиния (с номером 89) и во многом повторяющим его свойства.Четные ряды крупных периодов (4, 6, 8, 10) заполнены только металлами.Элементы в группах проявляют идентичную высшую валентность в оксидах и других соединениях, и эта валентность соответствует номеру группы. Основные подгруппы вмещают в себя элементы мелких и крупных периодов, побочные – только крупных. Сверху вниз металлические свойства усиливаются, неметаллические – ослабевают. Все атомы побочных подгрупп – металлы.

Совет 9: Селен как химический элемент таблицы Менделеева

Химический элемент селен относится к VI группе периодической системы Менделеева, он является халькогеном. Природный селен состоит из шести стабильных изотопов. Вестимо также 16 радиоактивных изотопов селена.

Инструкция

1. Селен считается дюже редким и рассеянным элементом, в биосфере он активно мигрирует, образуя больше 50 минералов. Самые знаменитые из них: берцелианит, науманнит, самородный селен и халькоменит.

2. Селен содержится в вулканической сере, галените, пирите, висмутине и других сульфидах. Его добывают из свинцовых, медных, никелевых и других руд, в которых он находится в рассеянном состоянии.

3. В тканях большинства живых существ содержится от 0,001 до 1 мг/кг селена, некоторые растения, морские организмы и грибы его концентрируют. Для ряда растений селен является нужным элементом. Надобность человека и звериных в селене составляет 50-100 мкг/кг пищи, данный элемент владеет антиоксидантными свойствами, влияет на уйма ферментативных реакций и повышает чувствительность сетчатки глаза к свету.

4. Селен может существовать в разных аллотропических модификациях: аморфной (стекловидный, порошкообразный и коллоидный селен), а также кристаллической. При поправлении селена из раствора селенистой кислоты либо стремительным охлаждением его паров получают аморфный алый порошкообразный и коллоидный селен.

5. При нагревании всякий модификации этого химического элемента выше 220°С и дальнейшем охлаждении образуется стекловидный селен, он хрупок и владеет стеклянным блеском.

6. Особенно устойчив термически гексагональный серый селен, решетка которого построена из расположенных параллельно друг другу спиральных цепочек атомов. Его получают при помощи нагревания других форм селена до плавления и неторопливым охлаждением до 180-210°С. Внутри цепей гексагонального селена атомы связаны ковалентно.

7. Селен устойчив на воздухе, на него не действуют: кислород, вода, разбавленная серная и соляная кислоты, впрочем он отменно растворяется в азотной кислоте. Взаимодействуя с металлами, селен образует селениды. Знаменито уйма комплексных соединений селена, все они ядовиты.

8. Получают селен из отходов бумажного либо сернокислого производства, способом электролитического рафинирования меди. В шламах данный элемент присутствует совместно с тяжелыми и порядочными металлами, серой и теллуром. Для его извлечения шламы фильтруют, после этого нагревают с концентрированной серной кислотой либо подвергают окислительному обжигу при температуре 700°С.

9. Селен применяется при производстве выпрямительных полупроводниковых диодов и иной преобразовательной техники. В металлургии с его поддержкой придают стали мелкозернистую конструкцию, а также улучшают ее механические свойства. В химической промышленности селен используется в качестве катализатора.

Видео по теме

Обратите внимание!
Будьте внимательны при определении металлов и неметаллов. Для этого традиционно в таблице даны обозначения.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав