11.10.2019

Растворимость naoh в воде. Гидроксид натрия (Е524)


Гидроксид натрия, натрий гидроксид — неорганическое соединение, гидроксид состав NaOH. Представляет собой белые, непрозрачные и очень гигроскопичные кристаллы. Вещество хорошо растворимый в воде при соединении с водой выделяется большое количество тепла.

Проявляет сильные щелочные свойства. Значение pH 1% -го водного раствора составляет 13.

Гидроксид натрия является токсичным соединением, может также вызывать коррозию металлов. Вещество применяется в производстве многочисленных продуктов, в частности, поверхностно-активных веществ, бумаги, косметики, лекарственных средств.

Физические свойства

Гидроксид натрия NaOH — белое твердое вещество. Оставленный на воздухе едкий натрий вскоре рассеивается так как притягивает влагу из воздуха. Вещество хорошо растворяется в воде, при этом выделяется большое количество теплоты.

Растворимость в метаноле составляет 23,6 г / л (при 28 ° C), в этаноле — 14,7 г / л (28 ° C).

Раствор едкого натра ошибкой на ощупь.

Термодинамика растворов

Энтальпия растворения для бесконечно разбавленного водного раствора составляет -44,45 кДж / моль.

Из водных растворов кристаллизуются гидраты:

  • при 12,3-61,8 ° C — моногидрат NaOH · H 2 O (сингониях ромбическая, температура плавления 65,1 ° C; плотность 1,829 г / см; ΔH 0 утв -425,6 кДж / моль)
  • в интервале -28 … -24 ° C — гептагидрат NaOH · 7H 2 O;
  • от -24 до -17,7 ° C — пентагидрат NaOH · 5H 2 O;
  • от -17,7 до -5,4 ° C — тетрагидрат NaOH · 4H 2 O (α-модификация);
  • от -8,8 до 15,6 ° C — NaOH · 3,5Н 2 О (температура плавления 15,5 ° C).
  • от 0 ° C до 12,3 ° C — дигидрат NaOH · 2H 2 O;

Получение

Исторически первым методом получения гидроксида натрия было взаимодействие соды Na 2 CO 3 и гашеной водой извести CaO:

Проведению реакции способствует перемешивание и высокая температура, поэтому ее осуществляли в стальных реакторах с мешалками. После получения продуктов, от продуктов отделяли растворим карбонат кальция и выпаривали остаточный раствор гидроксида натрия при 180 ° C в чугунных емкостях без доступа воздуха. Таким образом можно было получить раствор концентрацией до 95%.

В 1892 году независимо друг от друга американский ученый Гамильтон Кастнер и австриец Карл Кельнер открыли способ получения гидроксида электролизом хлорида натрия, который широко распространен в природе. Течение реакций можно описать суммарным уравнением:

Этот метод и по сей день является основным промышленным способом добывания NaOH, однако некоторые условия проведения синтеза испытывали модификаций. В частности, для предотвращения протекания реакций между продуктами и исходными веществами различные этапы взаимодействия проводят в отдельных реакторах или разграничиваются. По этому критерию различают три основных метода: ртутный, диафрагменные и мембранный.

Ртутный процесс

В оригинальном методе синтеза NaOH в качестве катода используется ртутный электрод. Попадая на катод, ионы натрия образуют там жидкие амальгамы переменного состава NaHg n:

Амальгамы выделяются из реакционной системы и переводятся в другую, где происходит разложение амальгамы водой с образованием гидроксида натрия:

По этому методу образуется раствор NaOH концентрацией 50-73% и практически свободен от загрязняющих примесей (хлора, хлорида натрия). Образована в результате разложения ртуть возвращается в электрод.

На аноде (графитовом или другом) происходит окисление хлорид-ионов с образованием свободного хлора

Кроме этого, имеют место также побочные реакции: окисление гидроксид-иона и электрохимическое образования хлорат-иона. Гидролизом полученного хлора могут образовываться и незначительные количества гипохлорит-ионов.

Диафрагменные процесс

В диафрагменного методе пространство между катодом и анодом разъединен перегородкой, которая не пропускает растворы и газы, однако не препятствует прохождению электрического тока и миграции ионов. Обычно, в качестве таких перегородок используется асбестовая ткань, пористые цементы, фарфор и т.

В анодный пространство подается раствор NaCl: на аноде (графитовом или магнетитовых) восстанавливаются хлорид-ионы, а катионы Na + (и, частично, анионы Cl -) мигрируют сквозь диафрагму к катодной пространства. Там катионы где сочетаются с гидроксид-ионами, образованными восстановлением воды на железном или медном катоде:

С катодной пространства в результате выделяется смесь гидроксида и хлорида натрия с содержанием NaOH 10-15% (и около 18% NaCl). Путем испарения удается увеличить концентрацию гидроксида до 50%, но содержание хлорида все равно остается существенным. Для выделения хлорида из смеси, ее обрабатывают жидким аммиаком с образованием легковиддилюваного хлорида аммония (однако, этот способ является малораспространенным за высокой стоимости его проведения). Также применяется метод, который заключается в охлаждении смеси и выделении кристаллов гидрата NaOH · 3,5H 2 O, которые в дальнейшем дополнительно дегидратують.

Мембранный процесс

Этот способ был разработан в 1970-х годах компанией «DuPont» и считается наиболее совершенным из существующих. В мембранном процессе в реакторе устанавливается катионообменная мембрана, которая является проницаемой для ионов Na +, движущихся в катодный пространство, и подавляет миграцию гидроксид-ионов, которые мигрируют в обратном направлении — таким образом в катодном пространстве увеличивается концентрация составляющих NaOH. Экономически выгодной для синтеза считается концентрация 30-35%, а новейшие мембраны позволяют увеличить это значение до 50%.

По этому методу хлорид натрия теоретически не образуется, но проникновение хлорид-ионов через мембрану все же может иметь место.

Получение твердого NaOH

Твердый NaOH (каустическая сода) получают выпариванием его раствора к содержимому воды меньше 0,5-1,5%. Сначала 50% -ный раствор выпаривают в вакууме до концентрации 60%, а концентрацию 99% достигают с применением теплоносителей (смесь NaNO 2, NaNO 3, KNO 3) при температуре выше 400 ° C: раствор подается насосом в разогретую камеру для испарения, где отделяется остальные воды.

Марки

Гидроксид натрия выпускается в двух видах: твердом и жидком. Твердая гранулированная каустическая сода представляет собой белую твердую массу с размером чешуек 0,5-2 см. Редкий раствор каустической соды — бесцветный. Коммерчески важны растворы гидроксида натрия с концентрацией 50%.

Технический едкий натр выпускают следующих марок:

  • ТР — твердый ртутный;
  • ТД — твердый диафрагменный (плавленый)
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.

Химические свойства

Гидроксид натрия активно поглощает влагу из воздуха, образуя гидраты различного состава, которые разлагаются при нагревании:

В растворах соединение хорошо распадается:

Проявляя сильные щелочные свойства, гидроксид натрия легко взаимодействует с кислотами, кислотными и амфотерными оксидами и гидроксидами:

NaOH легко взаимодействует с галогенами, а при высоких температурах — также и с металлами:

При взаимодействии с солями, которые являются производными слабых оснований, образуются соответствующие гидроксиды:

Реагируя с монооксидом углерода, синтезируется формиат натрия:

Требования безопасности

Сода каустическая пожаро- и взрывобезопасная. Едкая, коррозионно активное вещество. По степени воздействия на организм относится к веществам 2-го класса опасности. Как твердое вещество, так и концентрированные его растворы вызывают очень сильные ожоги. Попадание щелочи в глаза может привести к тяжелым заболеваниям и даже к потере зрения. При попадании на кожу, слизистые оболочки, глаза образуются сильные химические ожоги. При попадании на кожу — промыть слабым раствором уксусной кислоты.

При работе используют защитные средства: защитные очки, резиновые перчатки, прорезиненный химостойких одежду.

Применение

Гидроксид натрия применяется во многих отраслях промышленности и в быту:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волокнистых плит.
  • Для омыления жиров при производстве мыла, шампуня и других моющих средств. В последнее время продукты на основе гидроксида натрия (с добавлением гидроксида калия, нагретые до 50-60 градусов Цельсия, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
  • Для изготовления биодизельного топлива которое получают из растительных масел и используют для замены обычного дизельного топлива. Для получения биодизеля в девяти массовых единиц растительного масла добавляют одну массовую единицу спирта (то есть соблюдается пропорция 9: 1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается превосходной воспламеняемости, что обеспечивается высоким цетановым числом. Если для минерального дизтоплива характерен показатель в 50-52%, то метиловый эфир соответственно 56-58% цетана. Сырьем для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При ее производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности, или перерабатывается в Эпихлоргидрин по методу Сольве.
  • Как агент для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегуе засорения и способствует легкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации ядовитых веществ, в том числе зарина, в ребризера (изолирующих дыхательных аппаратах (ИДА), для очистки воздуха, выдыхаемого от углекислого газа.
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожуры, в производстве шоколада и какао, напитков, мороженого, покраске карамели, для размягчения маслин и предоставления им черного окраса, при производстве хлебобулочных изделий. Зарегистрировано в качестве пищевой добавки E524.
  • В косметологии для удаления ороговевших участков кожи: бородавок, папиллом.

Видео по теме

Изображения по теме

Физические свойства

Гидроксид натрия

Термодинамика растворов

ΔH 0 растворения для бесконечно разбавленного водного раствора -44,45 кДж/моль.

Из водных растворов при 12,3 - 61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −734,96 кДж/моль), в интервале от -28 до -24°С - гептагидрат, от -24 до -17,7°С - пентагидрат, от -17,7 до -5,4°С -тетрагидрат (α-модификация), от -5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t=28 °C), в этаноле 14,7 г/л (t=28 °C). NaOH·3,5Н 2 О (температура плавления 15,5 °C);

Химические свойства

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH - + H 3 O + → 2H 2 O. )

  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твердыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор) +H 2

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора - тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

  • с кислотными оксидами - с образованием солей; это свойство используется для очистки промышленных выбросов от кислотных газов (например: CO 2 , SO 2 и H 2 S):

2Na + + 2OH - + Cu 2+ + SO 4 2- → Cu(OH) 2 ↓+ Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия , действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.

Гидролиз эфиров

  • с жирами (омыление), такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин . Глицерин впоследствии извлекается из подмыльных щёлоков путем вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века:

Процесс омыления жиров

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

2NaCl + 2H 2 О = H 2 + Cl 2 + 2NaOH,

В настоящее время едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них - электролиз с твёрдым асбестовым или полимерным катодом (диафрагменный и мембранный методы производства), третий - электролиз с жидким катодом (ртутный метод производства). В ряду электрохимических методов производства самым лёгким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути. Мембранный метод производства самый эффективный, наименее энергоёмкий и наиболее экологичный, но и самый капризный, в частности, требует сырьё более высокой чистоты.

Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % - электролизом с твёрдым катодом (диафрагменный и мембранный методы).

Эффективность процесса производства рассчитывается не только по выходу едкого натра, но и по выходу хлора и водорода, получаемых при электролизе, соотношение хлора и гидроксида натрия на выходе 100/110, реакция протекает в следующих соотношениях:

1,8 NaCl + 0, 5 H 2 O + 2,8 МДж = 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2 ,

Основные показатели различных методов производства даны в таблице:

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора % 97 96 98,5
Электроэнергия (кВт·ч) 3 150 3 260 2 520
Концентрация NaOH 50 12 35
Чистота хлора 99,2 98 99,3
Чистота водорода 99,9 99,9 99,9
Массовая доля O 2 в хлоре, % 0,1 1-2 0,3
Массовая доля Cl - в NaOH, % 0,003 1-1,2 0,005

Технологическая схема электролиза с твёрдым катодом

Диафрагменный метод - Полость электролизёра с твёрдым катодом разделена пористой перегородкой - диафрагмой - на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения - диафрагменным электролизом . В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита. В результате электрохимического процесса на аноде за счет разложения галита выделяется хлор, а на катоде за счет разложения воды - водород. Хлор и водород выводятся из электролизёра раздельно, не смешиваясь:

2Cl - − 2е = Cl 2 0 , H 2 O − 2e − 1/2 О 2 = H 2 .

При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щёлоком , содержащий неразложившийся анолит и гидроксид натрия, непрерывно выводится из электролизёра. На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до 42-50 % в соответствии со стандартом. Галит и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или на стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией. Кристаллический галит (обратную соль) возвращают на электролиз, приготавливая из неё так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль анолита возмещают добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов или растворением твёрдого галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Мембранный метод - аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.

Технологическая схема электролиза .

Основная технологическая стадия - электролиз, основной аппарат - электролитическая ванна, которая состоит из электролизёра, разлагателя и ртутного насоса, объединенных между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизёра служит поток ртути. Аноды - графитовые или малоизнашивающиеся. Вместе с ртутью через электролизёр непрерывно течёт поток анолита - раствор галита. В результате электрохимического разложения галита на аноде образуются ионы Cl - и выделяется хлор:

2 Cl - - 2е = Cl 2 0 ,

который отводится из электролизёра, а на ртутном катоде образуется слабый раствор натрия в ртути, так называемая амальгама :

Na + + е = Na 0 nNa + + nHg - = Na + Hg

Амальгама непрерывно перетекает из электролизёра в разлагатель. В разлагатель также непрерывно подаётся хорошо очищенная от примесей вода. В нем амальгама натрия в результате самопроизвольного электрохимического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

Na + Hg + Н 2 0 = NaOH + 1/2Н 2 + Hg

Полученный таким образом раствор каустика, являющийся товарным продуктом, не содержит примеси галита, вредной в производстве вискозы. Ртуть почти полностью освобождается от амальгамы натрия и возвращается в электролизер. Водород отводится на очистку. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесенные с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают двух- или трёхступенчатым процессом растворённый в нём хлор.

Лабораторные способы получения

В лаборатории гидроксид натрия получают химическими способами, которые имеют больше историческое, чем практическое значение.

Известковый способ получения гидроксида натрия заключается во взаимодействии раствора соды с известковым молоком при температуре около 80 °C . Этот процесс называется каустификацией; он описывается реакцией:

Na 2 C0 3 + Са (ОН) 2 = 2NaOH + CaC0 3

В результате реакции образуется раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % NaOH. Расплавленный NaOH разливают в железные барабаны, где он застывает.

Ферритный способ описывается двумя реакциями:

Na 2 C0 3 + Fe 2 0 3 = Na 2 0 Fe 2 0 3 + C0 2 (1) Na 2 0 Fe 2 0 3 -f H 2 0 = 2 NaOH + Fe 2 O 3 (2)

(1) - процесс спекания кальцинированной соды с окисью железа при температуре 1100-1200°С. При этом образуется спек-феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (2); получается раствор гидроксида натрия и осадок Fe 2 O 3 , который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % NaOH.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество топлива, получаемый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.

Рынок каустической соды

Мировое производство натра едкого, 2005 год
Производитель Обьем производства, млн.тонн Доля в мировом производстве
DOW 6.363 11.1
Occidental Chemical Company 2.552 4.4
Formosa Plastics 2.016 3.5
PPG 1.684 2.9
Bayer 1.507 2.6
Akzo Nobel 1.157 2.0
Tosoh 1.110 1.9
Arkema 1.049 1.8
Olin 0.970 1.7
Россия 1.290 2.24
Китай 9.138 15.88
Другие 27.559 47,87
Всего: 57,541 100
В России согласно ГОСТ 2263-79 производятся следующие марки натра едкого:

ТР - твердый ртутный (чешуированный);

ТД - твердый диафрагменный (плавленый);

РР - раствор ртутный;

РХ - раствор химический;

РД - раствор диафрагменный.

Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуирова- нная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0
Показатели российского рынка жидкого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тыс.тонн 2006 г. тыс.тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Стерлитамак 239 249 20 20
ОАО «Каустик» , Волгоград 210 216 18 18
ОАО «Саянскхимпласт» 129 111 11 9
ООО «Усольехимпром» 84 99 7 8
ОАО «Сибур-Нефтехим» 87 92 7 8
ОАО «Химпром» , Чебоксары 82 92 7 8
ВОАО «Химпром» , Волгоград 87 90 7 7
ЗАО «Илимхимпром» 70 84 6 7
ОАО «КЧХК» 81 79 7 6
НАК «АЗОТ» 73 61 6 5
ОАО «Химпром», Кемерово 42 44 4 4
Итого: 1184 1217 100 100
Показатели российского рынка твердого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тонн 2006 г. тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Волгоград 67504 63510 62 60
ОАО «Каустик» , Стерлитамак 34105 34761 31 33
ОАО «Сибур-Нефтехим» 1279 833 1 1
ВОАО «Химпром» , Волгоград 5768 7115 5 7
Итого: 108565 106219 100 100

Применение

Биодизельное топливо

Треска Lutefisk на праздновании Дня Конституции Норвегии

Немецкий рогалик

Едкий натр применяется в огромном множестве отраслей промышленности и для бытовых нужд:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (Реакция Крафта) целлюлозы, в производстве бумаги , картона , искусственных волокон, древесно-волоконных плит.,
  • Для омыления жиров при производстве мыла , шампуня и других моющих средств . В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 г. н. э. Теодор Присцианус. Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад.
  • В химических отраслях промышленности - для нейтрализации кислот и кислотных окислов, как реагент или винилом или прорезиненные костюмы.

    ПДК гидроксида натрия в воздухе 0,5 мг/м³.

    Литература

    • Общая химическая технология. Под ред. И. П. Мухленова. Учебник для химико-технологических специальностей вузов. - М.: Высшая школа.
    • Основы общей химии, т. 3, Б. В. Некрасов. - М.: Химия, 1970.
    • Общая химическая технология. Фурмер И. Э., Зайцев В. Н. - М.: Высшая школа, 1978.
    • Приказ Минздрава РФ от 28 марта 2003 г. N 126 «Об утверждении Перечня вредных производственных факторов, при воздействии которых в профилактических целях рекомендуется употребление молока или других равноценных пищевых продуктов».
    • Постановление Главного государственного санитарного врача РФ от 4 апреля 2003 г. N 32 «О введении в действие Санитарных правил по организации грузовых перевозок на железнодорожном транспорте. СП 2.5.1250-03».
    • Федеральный закон от 21.07.1997 N 116-ФЗ «О промышленной безопасности опасных производственных объектов» (с изменениями на 18 декабря 2006 года).
    • Приказ МПР РФ от 2 декабря 2002 г. N 786 «Об утверждении федерального классификационного каталога отходов» (с изм. и доп. от 30 июля 2003 г.).
    • Постановление Госкомтруда СССР от 25.10.1974 N 298/П-22 «Об утверждении списка производств, цехов, профессий и должностей с вредными условиями труда, работа в которых дает право на дополнительный отпуск и сокращенный рабочий день» (с изменениями на 29 мая 1991 года).
    • Постановление Минтруда России от 22.07.1999 N 26 «Об утверждении типовых отраслевых норм бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам химических производств».
    • Постановление Главного государственного санитарного врача РФ от 30.05.2003 N 116 О введении в действие ГН 2.1.6.1339-03 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест».(с изменениями на 3 ноября 2005 года).
    • Иллюстрированный энциклопедический словарь
  • НАТРИЯ ГИДРОКСИД - (едкий натр, каустическая сода, каустик) NaOH бесцветное твёрдое кристаллическое вещество, плотность 2130 кг м. t = 320°С; при его растворении в воде выделяется большое количество теплоты; разрушающе действует на кожу, ткани, бумагу, опасно… … Большая политехническая энциклопедия

    - (натр едкий, каустическая сода), NaOH, сильное основание (щёлочь). Бесцветные кристаллы (технический продукт белая непрозрачная масса). Гигроскопичен, хорошо растворяется в воде, выделяя большое количество теплоты. Получают электролизом раствора … Энциклопедический словарь

    натрия гидроксид - natrio hidroksidas statusas T sritis chemija formulė NaOH atitikmenys: angl. caustic soda; sodium hydroxide rus. каустик; каустическая сода; натрий едкий; натрия гидроксид ryšiai: sinonimas – natrio šarmas sinonimas – kaustinė soda … Chemijos terminų aiškinamasis žodynas

    - (натр едкий, каустическая сода), NaОН, сильное основание (щёлочь). Бесцв. кристаллы (техн. продукт белая непрозрачная масса). Гигроскопичен, хорошо растворяется в воде, выделяя большое кол во теплоты. Получают электролизом раствора натрия хлорида … Естествознание. Энциклопедический словарь

    - (каустическая сода) NaOH, бесцв. кристаллы; до 299 °С устойчива ромбич. модификация (а =0,33994 нм, с =1,1377 нм), выше 299 o С моноклинная; DH0 полиморфного перехода 5,85 кДж/моль; т. пл. 323 °С, т. кип. 1403 °С; плотн. 2,02 г/см 3; … Химическая энциклопедия

    Каустическая сода, каустик, NaOH бесцветная кристаллич. масса, плотн. 2130 кг/м3, t Пл 320 °С, растворимость в воде 52,2% (при 20 °С). Сильное основание, на животную ткань действует разрушающе; особенно опасно попадание капель Н. г. в глаза.… … Большой энциклопедический политехнический словарь

    Сильная щелочь, широко применяемая в качестве очищающего вещества. При попадании гидроксида натрия на поверхность кожи он вызывает ее сильный химический ожог; в этом случае необходимо сразу же промыть пораженный участок кожи большим количеством… … Медицинские термины

    НАТРИЯ ГИДРОКСИД, СОДА КАУСТИЧЕСКАЯ - (caustic soda) сильная щелочь, широко применяемая в качестве очищающего вещества. При попадании гидроксида натрия на поверхность кожи он вызывает ее сильный химический ожог; в этом случае необходимо сразу же промыть пораженный участок кожи… … Толковый словарь по медицине

У скандинавских народов к рождественскому столу традиционно подают лютефиск. Дословно это название переводится как «рыба в щелочи», что, по сути, точно характеризует блюдо. Лютефиск – это предварительно высушенная рыба, которую несколько дней выдерживают в щелочном растворе, затем вымачивают в , обжаривают и подают к столу. В таком виде рыба приобретает необычную желеобразную консистенцию. В чем секрет? В том, что щелочной раствор скандинавы готовят из каустической соды – того самого агрессивного вещества, который в нашей стране больше знают, как средство для эффективного очищения канализационных труб. Наверное, многие сейчас подумали: «О, ужас! Как они могут это кушать?». Но должны вас еще больше ошеломить. Большинство из нас, если не ежедневно, то регулярно употребляет в пищу, содержащую каустическую соду. Просто в пищевой промышленности она прячется под другим именем – добавка Е524.

Общая характеристика

Научное название добавки Е524 – гидроксид натрия или едкий натр. Это очень агрессивное вещество синтетического происхождения не имеет аналогов в природе. В естественных для себя условиях оно принимает вид белых чешуек или небольших гранул мыльных на ощупь.

В наше время широко используется в разных отраслях жизнедеятельности, в том числе медицине, фармакологии, пищевой индустрии. В сельском хозяйстве, например, каустическую соду используют для проверки коровьего на наличие примесей. Это вещество применяют в производстве разных видов бытовой химии (самые популярные – для прочистки водопроводных и канализационных труб). В косметологии едкий натр добавляют в шампуни, мыло, жидкости для снятия лака, кремы, а также в средства для избавления от ороговевшей кожи. Кроме того, гидроксид натрия – незаменимое вещество в нефтеперерабатывающей, целлюлозно-бумажной промышленности и в производстве дизельного топлива.

В пищевой промышленности гидроксид натрия используют для регуляции кислотности, как стабилизатор и эмульгатор. Несмотря на весьма агрессивные свойства и внушительный список побочных эффектов, каустическая сода в качестве пищевой добавки разрешена во всем мире.

Опасные свойства каустической соды

Каустическая сода – довольно опасное вещество. На коже и слизистых оболочках при контакте с ней образуются глубокие и очень болезненные раны. Очень опасен контакт каустической соды с глазами, так как вызывает атрофию зрительного нерва, что ведет к слепоте. Если случайно вдохнуть порошок едкого натра, начнется приступ сильного кашля, одышка, появится боль в горле и даже возможен отек дыхательных легких. И можно только представить себе, что это вещество способно делать с нашими внутренними органами. Если случайно проглотить каустическую соду, очень быстро в животе появится сильная боль и чувство жжения, возможен анафилактический шок. При малейшем подозрении на отравление гидроксидом натрия важно немедленно вызвать скорую помощь. Участки кожи, пораженные едким натром, следует промыть несильным раствором борной или уксусной кислоты, слизистые оболочки – чистой водой, глаза – сначала обработать очень слабым раствором борной кислоты, а затем водой.

Хоть в пищевой промышленности гидроксид натрия используют в микродозах, но при регулярном употреблении пищи, содержащей Е524, возможны побочные эффекты.

В чем может содержаться

Пищевая добавка Е524 может содержаться в самых разных группах продукции, в которых выполняет самые разные функции. Взять хотя бы джемы и мармелады, в составе которых часто содержится гидроксид натрия. В этой группе продуктов добавка играет роль регулятора и стабилизатора уровня кислотности. Если добавить некоторое количество едкого натра в тесто для выпечки, то готовая продукция получит красивую румяную хрустящую корочку.

Самая известная сдоба, приготовленная с использованием каустической соды – это немецкие рогалики. Черные консервированные получают свой темный цвет и характерную консистенцию также благодаря добавке Е524. В изделиях из , или других видов жиров гидроксид натрия ускоряет расщепление . Эта добавка приходит на помощь и тогда, когда необходимо быстро и без труда очистить плоды от кожицы. Для этого фрукты, ягоды или овощи просто обрабатывают каустической содой. Кроме того, регулятор кислотности Е524 используют в производстве кисломолочной продукции, разных видов сладостей.

Гидроксид натрия – опасное химическое соединение. И хоть в пищевой промышленности Е524 используется в небольших дозах, которые обычно не представляют опасности для человека, излишняя осторожность не повредит. Если не желаете или не можете отказаться от Е-содержащей пищи сами, то постарайтесь хотя бы минимизировать количество «ешек» в рационе маленьких детей. А для этого не забывайте перед покупкой продукта проверять, из чего он состоит.

Французский учёный А. Л. Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия - кальцинированной содой (по растению Salsola Soda, из золы которого её добывали), а карбонат калия - поташем . В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium - калий.

Физические свойства

Гидроксид натрия

Термодинамика растворов

ΔH 0 растворения для бесконечно разбавленного водного раствора -44,45 кДж/моль.

Из водных растворов при 12,3 - 61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −734,96 кДж/моль), в интервале от -28 до -24°С - гептагидрат, от -24 до -17,7°С - пентагидрат, от -17,7 до -5,4°С -тетрагидрат (α-модификация), от -5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t=28 °C), в этаноле 14,7 г/л (t=28 °C). NaOH·3,5Н 2 О (температура плавления 15,5 °C);

Химические свойства

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH - + H 3 O + → 2H 2 O. )

  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твердыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор) +H 2

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора - тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

  • с кислотными оксидами - с образованием солей; это свойство используется для очистки промышленных выбросов от кислотных газов (например: CO 2 , SO 2 и H 2 S):

2Na + + 2OH - + Cu 2+ + SO 4 2- → Cu(OH) 2 ↓+ Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия , действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.

Гидролиз эфиров

  • с жирами (омыление), такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин . Глицерин впоследствии извлекается из подмыльных щёлоков путем вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века:

Процесс омыления жиров

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

2NaCl + 2H 2 О = H 2 + Cl 2 + 2NaOH,

В настоящее время едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них - электролиз с твёрдым асбестовым или полимерным катодом (диафрагменный и мембранный методы производства), третий - электролиз с жидким катодом (ртутный метод производства). В ряду электрохимических методов производства самым лёгким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути. Мембранный метод производства самый эффективный, наименее энергоёмкий и наиболее экологичный, но и самый капризный, в частности, требует сырьё более высокой чистоты.

Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % - электролизом с твёрдым катодом (диафрагменный и мембранный методы).

Эффективность процесса производства рассчитывается не только по выходу едкого натра, но и по выходу хлора и водорода, получаемых при электролизе, соотношение хлора и гидроксида натрия на выходе 100/110, реакция протекает в следующих соотношениях:

1,8 NaCl + 0, 5 H 2 O + 2,8 МДж = 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2 ,

Основные показатели различных методов производства даны в таблице:

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора % 97 96 98,5
Электроэнергия (кВт·ч) 3 150 3 260 2 520
Концентрация NaOH 50 12 35
Чистота хлора 99,2 98 99,3
Чистота водорода 99,9 99,9 99,9
Массовая доля O 2 в хлоре, % 0,1 1-2 0,3
Массовая доля Cl - в NaOH, % 0,003 1-1,2 0,005

Технологическая схема электролиза с твёрдым катодом

Диафрагменный метод - Полость электролизёра с твёрдым катодом разделена пористой перегородкой - диафрагмой - на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения - диафрагменным электролизом . В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита. В результате электрохимического процесса на аноде за счет разложения галита выделяется хлор, а на катоде за счет разложения воды - водород. Хлор и водород выводятся из электролизёра раздельно, не смешиваясь:

2Cl - − 2е = Cl 2 0 , H 2 O − 2e − 1/2 О 2 = H 2 .

При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щёлоком , содержащий неразложившийся анолит и гидроксид натрия, непрерывно выводится из электролизёра. На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до 42-50 % в соответствии со стандартом. Галит и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или на стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией. Кристаллический галит (обратную соль) возвращают на электролиз, приготавливая из неё так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль анолита возмещают добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов или растворением твёрдого галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Мембранный метод - аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.

Технологическая схема электролиза .

Основная технологическая стадия - электролиз, основной аппарат - электролитическая ванна, которая состоит из электролизёра, разлагателя и ртутного насоса, объединенных между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизёра служит поток ртути. Аноды - графитовые или малоизнашивающиеся. Вместе с ртутью через электролизёр непрерывно течёт поток анолита - раствор галита. В результате электрохимического разложения галита на аноде образуются ионы Cl - и выделяется хлор:

2 Cl - - 2е = Cl 2 0 ,

который отводится из электролизёра, а на ртутном катоде образуется слабый раствор натрия в ртути, так называемая амальгама :

Na + + е = Na 0 nNa + + nHg - = Na + Hg

Амальгама непрерывно перетекает из электролизёра в разлагатель. В разлагатель также непрерывно подаётся хорошо очищенная от примесей вода. В нем амальгама натрия в результате самопроизвольного электрохимического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

Na + Hg + Н 2 0 = NaOH + 1/2Н 2 + Hg

Полученный таким образом раствор каустика, являющийся товарным продуктом, не содержит примеси галита, вредной в производстве вискозы. Ртуть почти полностью освобождается от амальгамы натрия и возвращается в электролизер. Водород отводится на очистку. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесенные с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают двух- или трёхступенчатым процессом растворённый в нём хлор.

Лабораторные способы получения

В лаборатории гидроксид натрия получают химическими способами, которые имеют больше историческое, чем практическое значение.

Известковый способ получения гидроксида натрия заключается во взаимодействии раствора соды с известковым молоком при температуре около 80 °C . Этот процесс называется каустификацией; он описывается реакцией:

Na 2 C0 3 + Са (ОН) 2 = 2NaOH + CaC0 3

В результате реакции образуется раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % NaOH. Расплавленный NaOH разливают в железные барабаны, где он застывает.

Ферритный способ описывается двумя реакциями:

Na 2 C0 3 + Fe 2 0 3 = Na 2 0 Fe 2 0 3 + C0 2 (1) Na 2 0 Fe 2 0 3 -f H 2 0 = 2 NaOH + Fe 2 O 3 (2)

(1) - процесс спекания кальцинированной соды с окисью железа при температуре 1100-1200°С. При этом образуется спек-феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (2); получается раствор гидроксида натрия и осадок Fe 2 O 3 , который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % NaOH.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество топлива, получаемый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.

Рынок каустической соды

Мировое производство натра едкого, 2005 год
Производитель Обьем производства, млн.тонн Доля в мировом производстве
DOW 6.363 11.1
Occidental Chemical Company 2.552 4.4
Formosa Plastics 2.016 3.5
PPG 1.684 2.9
Bayer 1.507 2.6
Akzo Nobel 1.157 2.0
Tosoh 1.110 1.9
Arkema 1.049 1.8
Olin 0.970 1.7
Россия 1.290 2.24
Китай 9.138 15.88
Другие 27.559 47,87
Всего: 57,541 100
В России согласно ГОСТ 2263-79 производятся следующие марки натра едкого:

ТР - твердый ртутный (чешуированный);

ТД - твердый диафрагменный (плавленый);

РР - раствор ртутный;

РХ - раствор химический;

РД - раствор диафрагменный.

Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуирова- нная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0
Показатели российского рынка жидкого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тыс.тонн 2006 г. тыс.тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Стерлитамак 239 249 20 20
ОАО «Каустик» , Волгоград 210 216 18 18
ОАО «Саянскхимпласт» 129 111 11 9
ООО «Усольехимпром» 84 99 7 8
ОАО «Сибур-Нефтехим» 87 92 7 8
ОАО «Химпром» , Чебоксары 82 92 7 8
ВОАО «Химпром» , Волгоград 87 90 7 7
ЗАО «Илимхимпром» 70 84 6 7
ОАО «КЧХК» 81 79 7 6
НАК «АЗОТ» 73 61 6 5
ОАО «Химпром», Кемерово 42 44 4 4
Итого: 1184 1217 100 100
Показатели российского рынка твердого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тонн 2006 г. тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Волгоград 67504 63510 62 60
ОАО «Каустик» , Стерлитамак 34105 34761 31 33
ОАО «Сибур-Нефтехим» 1279 833 1 1
ВОАО «Химпром» , Волгоград 5768 7115 5 7
Итого: 108565 106219 100 100

Применение

Биодизельное топливо

Треска Lutefisk на праздновании Дня Конституции Норвегии

Каустическая сода - самая распространённая щёлочь, объемы производства и потребления которой в год составляют до 57 миллионов.
Чистый гидроксид натрия NаОН представляет собой белую непрозрачную массу, жадно поглощающую из воздуха водяные пары и углекислый газ.
Существуют две модификации безводного едкого натра –α-NаОН с ромбической формой кристаллов и β-NаОН с кристаллами кубической формы. С водой NаОН образует ряд кристаллогидратов: NaOH*H 2 O, где n = 1, 2, 2,5, 3,5, 4, 5,25 и 7.
Температура плавления = 323 гр. С, температура кипения = 1403 гр. С.
Плотность = 2,02 г/см 3 .

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13).
Это очень сильное химическое основание , вступает в реакции, характерные для типичных оснований.

Взаимодействует с различными веществами в любых агрегатных состояниях, от растворов и газов до твердых веществ - реакции нейтрализации . Вступает в реакции с кислотами, с амфотерными оксидами (в растворе и расплаве), с кислотными оксидами - с образованием солей.

Например:
2NaOH + 2HCl = 2NaCl + H 2 O
ZnO + 2NaOH (расплав) = Na 2 ZnO 2 + H 2 O
ZnO + 2NaOH (раствор) + H 2 O = Na 2 + H 2
2NaOH + CO 2 = Na 2 CO 3 + H 2 O (при избытке NaOH)
Взаимодействие с кислотными оксидами используется для очистки промышленных выбросов от кислотных газов (например: CO 2 , SO 2 и H 2 S).

Как сильная щелочь NaOH вытесняет более слабые основания из солей:
2NaOH + CoCl 2 = 2NaCl + Co(OH) 2

Это свойство применяют для осаждения гидроксидов металлов едким натром.
Например, таким образом очищают воду от мелких взвесей (получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе).
6NaOH + Al 2 (SO 4) 3 = 2Al(OH) 3 + 3Na 2 SO 4 .

Также гидроксид натрия вступает в реакции с неметаллами :
3S + 6NaOH → 2Na 2 S + Na 2 SO 3 + 3H 2 O
2NaOH + Cl 2 = NaClO + NaCl + H 2 O

и металлами (имеющими высокий электрохимический потенциал):
2Al + 2NaOH + 6H 2 O = 3H 2 + 2Na

Со спиртами образует алкоголяты:
HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

Участвует в реакциях гидролиза (взаимодействие с эфирами, амидами и алкилгалогенидами):
ROOR 1 + NaOH = ROONa + R 1 OH (эфир + гидроксид натрия = карбоксилат натрия + спирт)

Это свойство щелочи широко применяется в промышленности, при получении твердого мыла (в случае взаимодействия гидроксида натрия с мылом (омыление ) реакция необратима):
(C 17 H 35 COO) 3 C 3 H 5 + 3NaOH = C 3 H 5 (OH) 3 + 3C 17 H 35 COONa

Продукт очень агрессивен! Он разрушает стекло и фарфор за счет взаимодействия с содержащимся в них диоксидом кремния (выщелачивание силикатов ): 2NaOH + SiO 2 = Na 2 SiO 3 + H 2 O, а также материалы органического происхождения (бумагу, кожу и пр).

Класс опасности
Едкий натр представляет собой едкое вещество. При попадании на кожу вызывает химические ожоги, а при длительном воздействии может вызывать язвы и экземы. Сильно действует на слизистые оболочки. Опасно попадание едкого натра в глаза. Предельно допустимая концентрация аэрозоля едкого натра в воздухе рабочей зоны производственных помещений (ПДК) - 0,5 мг/м3.
Каустическая сода пожаро- и взрывобезопасна, относится к вредным веществам 2-го класса опасности по ГОСТ 12.1.007.

Упаковка, транспортировка, хранение
Технический едкий натр транспортируют железнодорожным, автомобильным, водным транспортом в крытых транспортных средствах в упаковке и наливом в железнодорожных и автомобильных цистернах в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

Железнодорожным транспортом продукт перевозят в бочках, барабанах, ящиках повагонно.
Технический едкий натр, предназначенный для медицинской промышленности и производства искусственного волокна, по требованию потребителя транспортируют в железнодорожных цистернах с котлами из нержавеющей стали или гуммированными, принадлежащих потребителю или изготовителю.
Цистерны заполняют едким натром до полной вместимости с учетом объемного расширения продукта при возможном перепаде температур в пути следования.
Перед заливом цистерн с остатком раствора едкого натра должен быть проведен анализ остатка на соответствие требованиям настоящего стандарта. Если анализ остатка соответствует требованиям настоящего стандарта, то цистерну заполняют продуктом; если анализ остатка не соответствует требованиям настоящего стандарта, то остаток удаляют, а цистерну промывают.

Технический едкий натр, упакованный в специализированные контейнеры, транспортируют только автомобильным транспортом.

Продукт, упакованный в бочки, барабаны и ящики, транспортируют в пакетированном виде по ГОСТ 26663, ГОСТ 24957, ГОСТ 21650, ГОСТ 21140, на поддонах по ГОСТ 9557 и ГОСТ 26381.

Раствор технического едкого натра хранят в закрытых емкостях из материала, стойкого к щелочам.
Упакованный продукт хранят в складских неотапливаемых помещениях.

Применение
Едкий натр находит широкое применение в самых разнообразных отраслях промышленности и для бытовых нужд.
- В химической и нефтехимической промышленности (на их долю приходится около 57% суммарного объема российского потребления NaOH)- для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке - для производства масел.
- Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.,
- Для омыления жиров при производстве мыла, шампуня и других моющих средств.
- В производстве биодизельного топлива, получаемого из растительных масел и используемого для замены обычного дизельного топлива.
- В качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
- Дегазации и нейтрализации отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
- В пищевой промышленности: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E524.
- В цветной металлургии, энергетике, в текстильной промышленности, для регенерации резины.

ПОЛУЧЕНИЕ

В начале 19 века производство каустической соды (NаОН) было тесно связано с развитием производства кальцинированной соды. Эта взаимосвязь была обусловлена тем, что сырьем для химического способа получения NаОН служила кальцинированная сода, которая в виде содового раствора каустифицировалась известковым молоком. В конце 19 века стали быстро развиваться электрохимические методы получения NаОН электролизом водных растворов NаСl. При электрохимическом способе получения одновременно с NаОН получают хлор, который находит широкое применение в промышленности тяжелого органического синтеза и в других областях промышленности, что объясняет быстрое развитие электрохимического производства NаОН.

На сегодняшний день каустическую соду получают либо путем электролиза раствора хлорида натрия (NaCl) с образованием гидроксида натрия и хлора, либо, реже, с помощью более старого способа, основанного на взаимодействии раствора кальцинированной соды с гашеной известью. Большое количество производимой в мире кальцинированной соды используется для получения каустической соды.

Взаимодействие раствора кальцинированной соды с гашеной известью. Каустическую соду получают из кальцинированной на установке периодического или непрерывного действия. Процесс обычно проводят при умеренных температурах в реакторах, оборудованных мешалками. Реакция образования каустической соды представляет собой реакцию обмена между карбонатом натрия и гидроксидом кальция:
Na 2 CO 3 + Ca(OH) 2 = CaCO 3 + 2NaOH
Карбонат кальция выпадает в осадок, а раствор гидроксида натрия отводится в коллектор.

Электролизные методы. В промышленном масштабе гидроксид натрия получают электролизом растворов галита (каменная соль NaCl) с одновременным получением водорода и хлора:
2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH

Когда концентрированный раствор хлорида натрия подвергается электролизу, образуются хлор и гидроксид натрия, но они реагируют друг с другом с образованием гипохлорита натрия – отбеливающего вещества. Этот продукт, в свою очередь, особенно в кислых растворах при повышенных температурах, окисляется в электролизной камере до перхлората натрия. Чтобы избежать этих нежелательных реакций, электролизный хлор должен быть пространственно отделен от гидроксида натрия.

В большинстве промышленных установок, используемых для получения электролизной каустической соды, это осуществляется с помощью диафрагмы (диафрагменный метод ), помещенной вблизи анода, на котором образуется хлор. Существуют установки двух типов: с погруженной или непогруженной диафрагмой. Камера установки с погруженной диафрагмой целиком заполняется электролитом. Соляной раствор втекает в анодное отделение, где из него выделяется хлор, а раствор каустической соды заполняет катодное отделение. В установке с непогруженной диафрагмой раствор каустической соды отводится из катодного отделения по мере образования, так что камера оказывается пустой. В некоторых установках с непогруженной диафрагмой в пустое катодное отделение напускается водяной пар, чтобы облегчить удаление каустической соды и поднять температуру.

В диафрагменных установках получается раствор, содержащий как каустическую соду, так и соль. Большая часть соли выкристаллизовывается, когда концентрация каустической соды в растворе доводится до стандартного значения 50%. Такой «стандартный» электролизный раствор содержит 1% хлорида натрия. Продукт электролиза пригоден для многих применений, например для производства мыла и чистящих препаратов. Однако для производства искусственного волокна и пленки требуется каустическая сода высокой степени очистки, содержащая менее 1% хлорида натрия (соли). «Стандартный» жидкий каустик можно надлежащим образом очистить методами кристаллизации и осаждения.

Мембранный метод - аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.

Непрерывное разделение хлора и каустика можно также осуществить в установке с ртутным катодом (ртутный электролиз ). Металлический натрий образует с ртутью амальгаму, которая отводится во вторую камеру, где натрий выделяется и реагирует с водой, образуя каустик и водород. Хотя концентрация и чистота соляного раствора для установки с ртутным катодом более важны, чем для установки с диафрагмой, в первой получается каустическая сода, пригодная для производства искусственного волокна. Ее концентрация в растворе составляет 50–70%. Более высокие затраты на установку с ртутным катодом оправдываются получаемой выгодой.

Литература:
ГОСТ 2263-79: Натр едкий технический. Технические условия. - М., ИПК Издательство стандартов, 2001; Популярная библиотека химических элементов. - М., Наука, 1977; Технология неорганических веществ и минеральных удобрений: Курс лекций. - Кафедра химии и экологии НовГУ, 2007; Основы общей химии, т. 3, Б. В. Некрасов. - М., Химия, 1970; Общая химическая технология. Фурмер И. Э., Зайцев В. Н. - М., Высшая школа, 1978


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав