26.06.2020

Плотность людского потока при эвакуации из зала. Параметры движения людских потоков при эвакуации. Порядок проведения расчета


Методики

Упрощенная аналитическая модель движения людского потока (определение расчетного времени эвакуации людей из помещений и зданий по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей)

С изменениями и дополнениями от:

Расчетное время эвакуации людей из помещений и зданий устанавливается по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной и шириной . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени эвакуации людей длину и ширину каждого участка пути эвакуации для проектируемых зданий принимают по проекту, а для построенных - по фактическому положению. Длину пути по лестничным маршам, а также по пандусам измеряют по длине марша. Длину пути в дверном проеме принимают равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельными участками горизонтального пути, имеющими конечную длину .

Расчетное время эвакуации людей следует определять как сумму времени движения людского потока по отдельным участкам пути по формуле:

, (П2.1)

где - время движения людского потока на первом (начальном) участке, мин;

Время движения людского потока на каждом из следующих после первого участка пути, мин.

Время движения людского потока по первому участку пути , мин, рассчитывают по формуле:

где - длина первого участка пути, м;

Скорость движения людского потока по горизонтальному пути на первом участке, м/мин (определяется по таблице П2.1 в зависимости от плотности D).

Плотность однородного людского потока на первом участке пути рассчитывают по формуле:

где - число людей на первом участке, чел.;

f - средняя площадь горизонтальной проекции человека, . принимаемая в соответствии с пунктами 4 , приложения N 5 к настоящей Методике;

Ширина первого участка пути, м.

Скорость движения людского потока на участках пути, следующих после первого, принимают по таблице П2.1 в зависимости от интенсивности движения людского потока по каждому из этих участков пути, которую вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

, (П2.4)

где , - ширина рассматриваемого i-го и предшествующего ему участка пути, м;

Интенсивности движения людского потока по рассматриваемому i-му и предшествующему участкам пути, м/мин (интенсивность движения людского потока на первом участке пути определяется по таблице П2.1 по значению , установленному по формуле (П2.3)).

Если значение , определяемое по формуле (П2.4) , меньше или равно , то время движения по участку пути , мин, равно:

при этом значения , м/мин следует принимать равными:

16,5 - для горизонтальных путей;

19,6 - для дверных проемов;

16,0 - для лестницы вниз;

11,0 - для лестницы вверх.

Если значение , определенное по формуле (П2.4) , больше то ширину данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:

При невозможности выполнения условия (П2.6) интенсивность и скорость движения людского потока по участку i определяют по таблице П2.1 при значении D = 0,9 и более. При этом следует учитывать время задержки движения людей из-за образовавшегося их скопления.

Таблица П2.1

Интенсивность и скорость движения людского потока на разных участках путей эвакуации в зависимости от плотности

Плотность потока D,

Горизонтальный путь

Дверной проем, интенсивность q, м/мин

Лестница вниз

Лестница вверх

Скорость

Интенсивность q, м/мин

Скорость

Интенсивность q, м/мин

Скорость

Интенсивность q, м/мин


К сожалению, подобных классических законов, описывающих пове­дение и движение людей в потоке эвакуирующихся при пожаре, не извест­но. Поэтому, чтобы «заглядывать в будущее» эвакуации необходимо было прежде суметь «увидеть» прошлое движение людей в подобных ситуаци­ях.

Решив эвакуироваться, человек в любом случае, выходит на началь­ный участок эвакуационного пути. Это может быть проход между рабочи­ми местами или оборудованием, проход между рядами зрительных мест, свободное пространство около места нахождения человека, соединяющие его с выходами из помещения.

Одновременно с ним на этот участок могут выходить и другие люди. Они выбирают направление движения к тому или иному выходу и тем самым определяют маршрут своего движения, т.е. по­следовательность участков эвакуационных путей, которые они должны пройти для того, чтобы попасть в безопасное место. Множество людей, одновременно идущих по общим путям в одном направлении, образует людские потоки.

Не смотря на очевидность такого определения, оно не определяет ни структуры, ни характеристик людского потока как процесса, явно имею­щего социальную природу и показатели, далёкие от привычных при опи­сании физико-технических явлений (потоков жидкостей, электрического тока, сыпучих веществ и т.п.).

Именно эти различия и объясняют, по-видимому, тот факт, что этот веками и повседневно наблюдаемый про­цесс не имел технического описания, пригодного для использования при проектировании коммуникационных путей и для разработки мероприятий по обеспечению безопасности эвакуации людей в чрезвычайных ситуаци­ях.

По-видимому, не простая для человеческого восприятия структура людского потока определила первоначальное его описание как массы лю­дей, состоящей из рядов, идущих в затылок друг другу люден - «элемен­тарных потоков» .

Такая модель, быстрее, соответствует воинскому подразделению на марше, чем неорганизованному перемещению людей, обгоняющих друг друга или идущих каждый в своём темпе и со своими целями.

Потребовались долговременные многочисленные натурные наблю­дения людских потоков и теоретические исследования, осно­ванные на их результатах, прежде чем сформировалось современное представление о структуре и характеристиках людского потока, отража­ющие его суть в технических параметрах процесса.

Натурные наблюдения показывают, что людской поток обычно имеет вытянутую сигарообразную форму.

Рис. 1 Схема людского потока: 1 головная часть; 2 основная: 3 замыкающая.

«Размещение людей в потоке (как по длине, так и по ширине) имеет всегда неравномерный и часто случайный характер. Расстояние между идущими людьми постоянно меняется, возникают местные уплотнения, которые затем рассасываются и возникают снова. Эти изменения неустой­чивые во времени...» .

Следовательно, на участке, занимаемым пото­ком, могут образовываться части с различными параметрами. При этом головная и замыкающая части состоят из небольшого числа людей, дви­гающихся, соответственно, с большей или меньшей скоростью, чем ос­новная масса людей в потоке. При эвакуации, головная часть потока уходит с большей скоростью вперед и по длине и числу людей возрас­тает, а замыкающая часть, наоборот, уменьшается.

Ширина потока b, как правило, обусловливается свободной для движения шириной участка, ограниченного ограждающими конструкци­ями, которые нарушают равномерность распределения людей в потоке, поскольку между ограждающими конструкциями и массой людей при движении всегда образуются зазоры Δδ, соблюдаемые людьми из-за неизбежного раскачивания при ходьбе и опасения задеть конструкцию или какую-нибудь выступающую ее деталь.

Поэтому движение людей в середине потока происходит при большей плотности, чем по краям. Ширина, которую людской поток использует для движения, называют шириной потока или эффективной шириной участка пути. Ве­личины зазора, на которую уменьшается эффективная ширина участков различных видов пути в свету, приведены на рис. 2.

Рис. 2. Разница между эффетивной шириной и шириной в свету участков различных видов пути

Движение людей в потоке не прямолинейно и имеет сложную траек­торию. Наблюда­емыми параметрами людского потока являются: количество людей в пото­ке N, его плотность D, скорость V и величина потока P. Плотность людского потока D i - отношение количества людей в по­токе (N i) к площади занимаемого им участка, имеющего ширину b i (для простоты вычислений ширину потока принимают равной ширине участка) и длину l i: D i = N i /b i l i чел/м 2 . Плотность потока определяет свободу движения людей в нем, и, как следствие, соответствующий уровень комфортности людей.

Кинематические закономерности движении людских потоков. Движение через границы смежных участков пути

В простейшем случае движения людских потоков имеем следующую ситуацию.

По участку n имеющему ширину δ n , к границе со следующим участком (n+1), имеющему ширину δ n+1 ,подошёл людской поток численностью N человек. По прошествии времени t весь поток перешёл на уча­сток n+1 и занял часть его длины Δl n +1 . Спрашивается: с какими же значениями параметров двигался поток по участку n+1? Для облегчения понимания процесса перехода была принята упро­щенная модель людского потока.

Упрощение состояло в том, что «по­скольку количество людей, составляющих головную и замыкающую части, относительно невелико по сравнению с основной массой, то вполне воз­можно показать поток в виде прямоугольника».

(Однако, в реально­сти, «В аварийных... условиях движения... головная, уходящая с боль­шей скоростью вперёд часть потока будет по длине н количеству людей возрастать, а остающаяся, замыкающая часть, наоборот, уменьшаться.

По­этому для аварийных условий необходимо обязательно учитывать так называемое растекание потока и, следовательно, постепенное изменение его плотности.»).

Размещение людей в потоке ни занятом нм участке Δl n принимается равномерным, а ширина потока b равной ширине участков, по которым он перемешается, т.е., соответственно, δ n и δ n +1 .

Впервые этот вопрос было предложено решить следующим образом: «Если известна плотность D 1 потока на данном участке пути шириною δ 1 , то его плотность D 2 на следующем по ходу движения участке шириной δ 2 определяется из выражения D 2 =D 1 δ 1 /δ 2 “

Однако, предположим, что людской поток численностью N человек и с плотностью D 1 двигается по горизонтальному участку постоянной шири­ны δ 1 , разделенному проёмом шириной δ 0 . Следовательно, плотность в проёме будет равна:

D 0 =D 1 δ 1 /δ 0 чел/м 2 .

Соответственно плотность на последующем после проёма участке пути:

D 1 =D 0 δ 0 /δ 1 чел/м 2 .

Из расчёта следует, что плотность на участках перед проёмом и после проёма при равной ширине участков оказывается одинаковой даже в том случае, когда пропускная способность проёма меньше пропускной способ­ности предшествующего проёму участка.

Очевидно, что пропускная спо­собность участка не может быть больше пропускной способности предше­ствующего ему проёма. Иначе говоря, участок не может пропустить боль­шее количество людей, чем на нею поступает за то же время с предыдуще­го участка.

Из расчёта также следует, что движение через проём протекает при постоянной плотности. Следовательно, при одном и том же количестве людей, но при разных ширинах предшествующего проёму участка, плот­ность в проёме не меняется.

Однако при большей ширине участка и, сле­довательно, при меньшей плотности скорость будет больше, то есть коли­чество подходящих к проёму людей в единицу времени будет больше. По-видимому, предпосылку расчёта, вытекающую из выражения сле­дует признать неточной.

Возможны два случая:

первый - поток переходит через границу участков без задержки;

второй - перед границей следующего участка происходит задержка людей

В первом случае, если задержки движения на границе участков не происходит, то время, которое потребуется потоку для окончания движе­ния по участку n (пройти оставшийся отрезок длиной Δl n =N/D n δ n) со­ставит:

t n =Δl n /V n =N/V n D n δ n

Ясно, что это время движения замыкающей плоскости потока по участку n.

За это же время поток пройдёт по участку n+1 отрезок пути длиной Δl n +1 при неизвестной плотности D n +1 и неизвестной скорости движения V n +1 . Длина этого отрезка составит: Δl n +1 =N/D n +1 δ n +1 а время:

t n+1 = Δl n +1 /V n +1 =N/V n +1 D n +1 δ n +1

Но, поскольку t n = t n +1 , то, следовательно, V n D n δ n = V n +1 D n +1 δ n +1 Обозначим величину D V через q, тогда можно записать:

q n +1 = q n δ n /δ n +1

Это соотношение впервые было установлено (иным способом) лишь в 1957 году. Позже величина q была названа интенсивностью движения людского потока, «так как значения q, не зависящие от ширины пути, ха­рактеризуют кинетику процесса движения людского потока.

Значения ин­тенсивности движения соответствуют значениям пропускной способности пуги шириной 1м».

(Следует отметить, что величина «интенсивность движения», обозначаемая также через q используется и в теории транс­портных потоков, хотя и имеет несколько иную интерпретацию).

Каждому значению интенсивности движения соответствует опреде­лённое значение плотности потока, поэтому по найденному q n +1 = q n δ n /δ n +1 значению интенсивности движения по участку n+1 всегда можно определить соот­ветствующее ему значение плотности D n +1 ,а по нему - и значение скоро­сти V n +1 .

Каков же характер кинетики людского потока, характеризуемый ин­тенсивностью ею движения?

Поскольку эта величина является произведением двух величин, при возрастании одной из которых (D) вторая (V) снижается, то при любом ви­де зависимости V=φ(D), это произведение должно иметь максимум, q m a x .

Положение и значение максимума зависит от вида функции V=φ(D) и от её конкретных значений. Для примера в таблице 1 приведены значения V и q. Графики зависимости q =φ(D) при соответствующих значениях V* и V** приведены на рис.3

Таблица 1. Изменение значений интенсивности людского потока q от вида зависимостей скорости его движения от плотности потока.

Плотность D, чел/м 2

Скорость V*, м/мин

Интен-сивность, чел/ммин

Скорость V**. м/мин

Интен-сивность чел/ммнн

Рис. 3 Графики функции q=φ(D)

Поскольку произведение интенсивности движения на ширину участка показывает количество людей, проходящих в единицу времени через попе­речное сечение участка пути, занятому потоком, то величина людского по­тока Р равна Р = qb, чел/мин.

Здесь b - именно ширина потока, которая в данном случае ограниче­на конструкциями пути эвакуации; это хорошо понятно в случае движения людского потока по участку неограниченной ширины, когда ширина потока н ширина участка пути (вестибюля) не совпадают.

Можно сказать, что геометрия путей движения деформирует поток, вынуждая его принимать различную ширину и длину; величина же потока, как показыва­ет соотношение q n +1 = q n δ n /δ n +1 , остаётся, при обеспечении беспрепятственности его движения, неизменной.

Иная ситуация складывается во втором случае движения людского потока через границы смежных участков пути, когда недостаточная шири­на последующего участка (n+1) заставляет поток двигаться с интенсивно­стью больше максимальной (значение q n +1 , определённое по формуле q n +1 = q n δ n /δ n +1 , больше значения q max для данного вида пути), что невозможно.

Поэтому часть людей не может перейти на последующий участок пути и скаплива­ется перед его границей, в чрезвычайных ситуациях - при максимальной плотности D max . Продолжающие подходить к скоплению люди, надавли­вают на находящихся в нём людей. В следующий момент времени они са­ми оказываются под давлением вновь подошедших людей. Плотность в скоплении может достичь физического предела.

Давление людей друг на друга продолжает расти и никто из них уже не можег ею регулировать, а оно достигает таких величин, которых не может выдержать человеческий организм длительное время. Спустя 3-4 минуты в нем уже возникают про­цессы компрессионной асфиксии, сопровождающиеся тканевым и костным травматизмом.

Как показали специальные натурные наблюдения в услови­ях, приближенных к аварийным ситуациям , высокие плотности в скоплениях перед проёмами с недостаточной пропускной способностью возникают очень быстро, через 5-7 сек., после начала их образования.

Очевидная опасность таких ситуаций определила большое внимание к их исследованиям в местах наиболее вероятного образования в дверных проёмах.

Эти исследования показали, что люди, подходя к более узкому участ­ку пути, в частности к проёму, заранее несколько корректируют направле­ние своего движения к центру.

В результате происходит взаимное сближе­ние человеческих тел и соответствующее уплотнение потока. При этом взаимное расположение тел приближается по виду к непрерывной вогну­той цепи.

Чем меньше ширина проёма, тем ближе люди в этой цепи вы­нуждены прижиматься друг к другу. В проёме люди образуют своего рода арку, пяты которой упираются в дверную коробку, причем выпуклость ар­ки направлена в сторону, противоположную направлению движения, рис. 4.

Явление возникновения арки тесно связано с возникновением эффекта «ложного проема». При проходе через дверной проем, люди стремятся из­бежать быть прижатыми к косяку проема. Для этого люди, идущие с боков, отталкиваются от косяка к центру проема.

Они на короткое время умень­шают действительную ширину проема, создавая тем самым «эффект лож­ного проема», рис.4. Одновременно люди, идущие ближе к оси проема, оказываются в зазоре между людьми, идущими с боков, и при определен­ных условиях как бы заклинивают проем, образуя арку.

Рис.4. Движение людского потока через проемы при их недостаточной пропуск­ной способности: а) схема образования арки, б) эффект ложного проема.

Существование арки носит пульсирующий характер, устойчивое ее положение явление редкое. Причем, арки редко возникают в проемах шириной 1,2м и практически не образуются в проемах шириной более 1.6м.

На рис.4 буквой Р обозначено усилие, сообщаемое звену арки тол­пой людей. Это усилие в арке раскладывается на систему сил, вызываю­щих и боковые давления (Т) на торцы элементов арки (плечи людей). Тор­цовые усилия могут быть вычислены по формуле T=P/2sin0,5φ. из кото­рой видно, что силы, которыми человек зажат с богов тем больше, чем значительнее давление на арку (Р) со стороны толпы и меньше угол φ. Си­ла Р слагается из усилий, оказываемых людьми, оказавшимися в каждом секторе толпы, спирающемся на человека в образовавшейся арке.

Такие усилия создаются людьми сознательно или бессознательно, когда они смещают центр тяжести своего тела в сторону арки и отставляет свою ногу в противоположном направлении для упора. Расчёты показыва­ют, что силы Р могут составлять более 100 кг, а Т - более 150 кг.

Мри таких силах сдавливания человеку трудно самостоятельно вырваться из арки и, сели арка не разрушается, то их воздействие может привести к увечьям и даже смерти. Печальные по­следствия их практического подтверждения давно известны.

Так. в ре­зультате образования скоплений перед выходами во время паники в театре Броклона (г. Нью-Йорк) в 1879 году погибло 283 человека. К сожалению, они продолжают происходить и в наше время.

Оставаясь в рамках модели с равномерным распределением людей по длине потока, следует считать, что образование скопления начинается сра­зу, как только передняя граница потока на участке n достигнет границы с участком n+1. Перед этой границей образуется скопление с плотностью D max , состоящее из людей, не успевших перейти её до подхода следующей части потока с плотностью D n .

Таким образом, образуется поток, состоя­щий из двух частей с разными плотностями. Поскольку скопление растёт, то граница между этими частями потока перемещается в направлении, противоположном направлению движения потока.

Интенсивность движения в скоплении q Dmax определяет и величину людского потока на последующем участке пути, т.е. то количество людей, которое может перейти на него из скопления перед его границей за едини­цу времени: Р = q Dmax δ n +1 . При этом возможны два варианта развития про­цесса движения людского потока но участку n+1.

Первый вариант: поток продолжает движение при плотности D max . Второй вариант: люди, перехо­дя на участок n+1, имеют перед собой пространство свободное для движе­ния, поэтому они увеличивают скорость до значения V n +1 , соответствую­щего значению интенсивности движения в скоплении q max , но при значе­нии плотности в интервале до D при q max .

Слияние людских потоков

Слияние людских потоков может происходить на участках пути, где соединяются несколько путей и идущие по ним потоки, слившись в общий поток, затем идут по общему пути.

Таким образом, процесс слияния всегда сопровождается процессом движения потоков через границы смежных участков пути.

Только, в отли­чие от рассмотренного выше, в данном случае участку общего пути дви­жения (n+1) будет предшествовать не один, а несколько, по крайней мере, два или три (n 1 , n 2 и n 3) участка. И здесь так же возможны два случая: беспрепятственное движение через границу смежных участков пути или образование скопления людей перед границей участка n+1.

Очевидно, что одновременный подход головных частей потоков к ме­сту слияния в практике встречается редко.

Как правило, люди из боковых проходов выходят либо в общий проход без слияния, либо вклиниваясь в поток идущих людей (рис.5.). Слияние людских потоков происходит при выполнении условия слияния потоков: передний фронт потока n, должен подойти к месту слияния до того, как последний человек из потока n пройдет место слияния потоков, т.е.:t n 1 ≤t n 2

Рис. 5. Слияние людских потоков.

Если слияние потоков происходит, то величина объединенного потока равна сумме величин сливающихся потоков, если ширина участка, на гра­нице коюрою они сливанлси, достаючна дли сю беспрепятственною движения, т.е. соблюдается условие q n +1 =S(q n δ n /δ n +1)

Если же пропускная способность последующего участка пути недо­статочна, то перед его границей с участками n 1 , и n 2 на этих участках об­разуются скопления людей с максимальной для данных условий плотно­стью, а поток, переходящий на участок n+1, будет иметь параметры дви­жения. соответствующие q при D max .

Переформирование и растекание людского потока.

При движении людских поток по участкам пути, весьма вероятны случаи, когда объединенный людской поток имеет несколько частей с раз­личной плотностью, рис.2.9. Например, при неодновременном слиянии двух потоков в объединённом потоке образуются три части: первая часть - с параметрами потока, первым прошедшем место слияния, вторая - с па­раметрами слившихся потоков, третья - с параметрами потока, последним миновавшем участок слияния.

Переформирование людского потока про­цесс выравнивания параметров движения в различных частях потока. В ре­зультате, вне зависимости от исходных параметров, каждая часть потока приобретает параметры впереди идущей части. Скорость переформнрования V - скорость движения границы увеличения впереди идущей части - определяется скоростью перемещения границы между частями потока с различной плотностью.

Рис. 6. Схема процесса переформирования людского потока.

К началу процесса переформирования люди в авангарде второй части потока, имеющей плотность D 2 , идут со скоростью V 2 и разметаются вплотную к первой части, имеющей плотность D 1 и скорость V 1 . По про­шествии времени t все люди из второй части потока разместятся на участ­ке Δl n 1 с плотностью D 1 в конце впереди идущей части, образуя единый поток с этой плотностью D 1 . Если D 1 ≥D 2 , то Δl n 2 ≤l n 2 и Δl n 2 =l n 2 D 2 /D 1 .

На рисунке 2.9. видно, что за время t люди, замыкающие первую часть потока, а вместе с ними и люди из примыкающего авангарда второй части проходят расстояние х+Δl n 2 =V 1 t. Люди же из замыкающей части второго потока проходят расстояние х + Δl n 2 =V 2 t. Исходя из приведённых соотношений можно записать: (х + l n 2 D 2 /D 1)/ V 1 = (х + l n 2)/V 2 и, преоб­разовав, получим

х(1-V 1 /V 2)= Δl n 2 (q 1 /q 2 -1).

Поскольку скорость переформирования потока, т.е. скорость приобре­тения второй частью потока плотности первой части, неизвестна, то обо­значим её V 1 . Тогда можно записать x = V 1 t. Но: x+ l n 2 D 2 /D 1 =V 1 t и, по­сле алгебраических преобразований, имеем:

V 1 = (q 1 –q 2)/(D 1 -D 2).

Подобным образом может быть выведена и формула для расчёта вре­мени переформирования потока:

t 1 = Δl n2 (D 1 -D 2)/D 2 (V 2 -V 1) = l n2 (D 1 -D 2)/ D 1 (V 2 – V 1).

Пока рассматривалась ситуация, в которой плотность людского пото­ка в его впереди расположенной части выше плотности сзади расположен­ной части потока, и, следовательно, V 1 ≤V 2 . Считается, что и в случае V 1 ≥V 2 также происходит переформирование людского потока: люди из второй части потока, идущие с меньшей скоростью, увеличивают скорость и продолжают движения со скоростью первой части.

Если головная часть потока имеет плотность свободного движения, то и весь поток, со време­нем. будет идти со скоростью свободного движения, т.е. с максимальной при данном уровне эмоционального состояния людей. Происходит расте­кание потока. Расчёт процесса растекания потока производится по форму­лам, принимая V 1 =V 0 и D 1 =D 0 , т.е. равные значениям при сво­бодном движении людей в потоке.

Однако, очевидно, что для этого все люди в потоке должны иметь одинаковые физические возможности или стимулировать свою подвиж­ность, переходя на более высокий уровень эмоционального состояния.

Та­кое наиболее вероятно в чрезвычайных ситуациях. Частичное растекание потока ежедневно наблюдается в часы пик на пешеходных коммуникациях станций и пересадочных узлах метрополитена. Но здесь же мы наблюдаем и образование г рупп более медленно идущих, не так торопящихся и пожи­лых, люден.

  • Пневматическое прыжковое спасательное устройство «Куб жизни». Технические характеристики ППСУ-20
  • Собаки спасатели. Породы. Кинологическая служба МЧС России.

г) Плотность людского потока (Di) вычисляется для каждого участка эвакуационного пути по формуле

Di = (N * f)/(Li * di), (3)

где N - число людей (табл. 1);

f - средняя площадь горизонтальной проекции человека (принять f = 0,1 м2);

di - ширина i-го участка эвакуационного пути, м (табл. 1).

д) Время прохождения дверного проёма приближённо можно рассчитать по формуле

tд.п. = N/(dд.п. * qд п.), (4)

где dд.п. – ширина дверного проёма, м (табл. 1);

qд.п. – пропускная способность 1 м ширины дверного проёма (принимается равной 50 чел./(м * мин) для дверей шириной менее 1,6 м и 60 чел./(м * мин) для дверей шириной 1,6 м и более).

Рассчитаем параметры для каждого участка движения.

1) Движение от самого удалённого рабочего места до двери помещения.

где a и b – длина и ширина помещения.

Плотность людского потока

Поскольку мы не знаем ширину проходов в помещении при расположении мебели, возьмем d1 = 1,4 м – ширина двери.

D1 = (N * f)/(L1 * d1) = (500* 0.1)/(18 * 1,4)= 1,98

Скорость V1 = 15 м/мин

t1 = L1/V1 = 18/15= 1,2 мин

2) Прохождения дверного проёма помещения

tд.п. = N/(dд.п. * qд п.)=500 чел/(1,4 м* 50 чел./(м * мин))= 7,14 мин

3) Движение по коридорам

Плотность людского потока

D3 = (N * f)/(L1 * d3)= (500* 0.1)/(40 * 3)= 0,42

Скорость (интерполяцией из таблицы)

V3 = 39 м/мин

t3 = L3/V3 = 40/39= 1,03 мин

4) Движение по лестницам

Плотность людского потока

D4 = (N * f)/(L1 * d3)= (500* 0.1)/(10* 2,0)= 2,5

Скорость V4 = 8 м/мин

t4 = L4/V4 = 10/8= 1,25 мин

5) Прохождения дверного проёма из здания

tд.п. = N/(dд.п. * qд п.)=500 чел/(1,8 м* 60 чел./(м * мин))=4,63 мин

6) Суммарное время

t = 1,2 + 7,14 + 1,03 + 1,25 + 4,63 = 15,25 мин

3. Необходимое (нормируемое) время эвакуации

При нормировании времени эвакуации для производственных зданий промышленных предприятий учитывается степень огнестойкости здания, категория производства и этажность здания (табл. 4). Необходимое время эвакуации из рабочих помещений производственных зданий зависит также и от объёма помещения (табл. 3).

Wп = 0,4 тыс. м3 - объём помещения.

Степень огнестойкости – I.

По таблице определяем

tп.о.з = 0,5 мин

Расчетное время эвакуации из рабочего помещения:

t =1,2 + 7,14 = 8,34 мин

Необходимое время эвакуации из производственного здания

tо.з = до 4 мин

Нормируемое время эвакуации из рабочего помещения почти в 17 раз меньше расчетного. Нормируемое время эвакуации из производственного здания в 4 раза меньше расчетного. Проект требованиям пожарной безопасности не соответствует.

Таблица 3

Необходимое время эвакуации из помещений производственных зданий (tп.п.з.)

Время эвакуации (tп.п.з.), мин, из помещений производственных зданий I, II и III степени огнестойкости при объёме помещения (Wп), тыс. м3

60 и более

Не ограничивается

Примечание. Для зданий IV степени огнестойкости необходимое время эвакуации уменьшается на 30%, а для зданий V степени огнестойкости – на 50%

Таблица 4

Необходимое время эвакуации из производственных зданий (tп.з.)

Часть 2. Пожар в рабочем помещении

Условие задачи . В рабочем помещении, облицованном древесноволокнистыми плитами (или имеющем перегородки из них), произошло возгорание. Площадь пожара, при горении облицовочных плит, приведена в исходных данных (табл. 1). Рассчитать время (tд), необходимое для эвакуации людей из горящего помещения с учётом задымлённости.

1. Определение расчётного времени эвакуации из рабочего помещения по задымлённости (tд)

а) tд = (Косл * Кг * Wп)/(Vд * Sп.г.), (5)

где Косл – допустимый коэффициент ослабления света (принять Косл = 0,1);

Кг – коэффициент условий газообмена;

Wп - объём рабочего помещения, м3 (табл. 1);

Vд - скорость дымообразования с единицы площади горения, м3/(м2 * мин);

Sп.г. - площадь поверхности горения, м2.

б) Кг = Sо/Sп, (6)

где Sо - площадь отверстий (проёмов) в ограждающих стенах помещения, м2 (табл. 1);

Sп - площадь пола помещения, м2 (вычислим по исходным данным).

Кг = Sо/(a*b) = 6/(15*10)= 0,04

в) Vд = Кд * Vг, (7)

где Кд - коэффициент состава продуктов горения (для древесноволокнистых плит равен 0,03 м3/кг);

Vг - массовая скорость горения (для древесноволокнистых плит принимается равной 10 кг/(м2 * мин)).

Vд = 0,03 * 10 =0,3 м/мин

г) Sп.г. = Sп.п. * Кп.г., (8)

где Sп.п. - предполагаемая площадь пожара, м2 (табл. 1);

Кп.г. – коэффициент поверхности горения (для разлившихся жидкостей и облицовочных плит Кп.г. = 1).

Sп.г. = 8 * 1 = 8 м2

tд = (Косл * Кг * Wп)/(Vд * Sп.г.) = (0,1 * 0,04 * 400)/(0,3 * 8.) = 0,67 мин

2. Оценка полученного результата

Расчётное время эвакуации по задымлённости из рабочего помещения, полученное по формуле (5) меньше расчётного временем эвакуации людей из рабочего помещения, полученным по формуле (1), равного 8,34 мин и больше необходимого (нормируемого) времени эвакуации из рабочего помещения, равного 0,5 мин. По времени эвакуации по задымленности проект требованиям соответствует, если внести в него изменения для соответствия нормируемому времени эвакуации.

Вывод:

Исходя из проделанных расчетов, можно сделать вывод, что строительный проект нормам пожарной безопасности не соответствует.

На рис. представлена схема плана типового этажа корпуса технического вуза. Здание второй степени огнестойкости имеет 7 этажей На этаже размещаются помещения кафедр и помещения для занятий по половине группы, размером в осях 6 ´ 6 м, которые могут объединяться в общую аудиторию для занятий целой группы (размером в осях 6 ´ 9 м и 6 ´ 12 м).



Схема плана типового этажа технического вуза

Абсолютно симметричное размещение лестничных клеток (А, Б, В и Г) позволяет подразделить план на четыре равные зоны. На рис. приведена схема планировки одной из таких зон, обслуживаемых лестничной клеткой Б, с указанием количества людей, эвакуирующихся из каждой аудитории, и маршрутов их движения в лестничную клетку Расчетная схема путей эвакуации и движения людских потоков дана на рис.

В каждом помещении аудиторий находится менее 50 чел. и расстояние от любой точки в ней до выхода не превышает 25 м, поэтому согласно п. 3.5 и СНиП 2.08.02-85 из аудиторий может быть один выход в коридор с минимальной шириной двери выхода из помещения, равной 0,9 м.

Ширина коридора в свету d К составляет 2,6 м. Поток в коридоре формируется на участках от выходов из помещений, наиболее удаленных от лестничной клетки Б, до дверного проема, отдаляющего его от поэтажного холла, т. е. на участках (слева и справа по отношению к лестничной клетке) длиной l 1 = 6 + 6 + 1,5 = 13,5 м. Плотность людского потока на участке его формирования в коридоре определяется как количество людей N, выходящих на него, к его площади. При этом следует учитывать неодновременность использования всех помещений, принимая расчетную численность студентов с коэффициентом К = 0,8 от проектной вместимости помещений. Следовательно, расчетная плотность людского потока на участке формирования в коридоре определится по формуле

D К = = 6 × 14 × 0,8 / 2,6 × 13,5 = 1,91 ~ 2 чел/м 2 .

По табл. 6 СНиП 2.08.02-85 этому значению плотности соответствует допустимое расстояние от наиболее удаленного выхода из помещения до выхода в лестничную клетку:

60 м - из помещений, расположенных между лестничными клетками;

30 м - из помещений с выходами в тупиковый коридор.

Фактические расстояния в рассматриваемом проекте составляют 13,5 + 6 + 2 = 21,5 м, что меньше нормативных.

Двигаясь по пути эвакуации, людские потоки проходят через три дверных проема. Следует определить их требуемую ширину , согласно данным п. 3.9 СНиП 2.08.02-85 по формуле

S NK / 165 = Np \ 165 ,

Где S NK - суммарное количество людей (с учетом неодновременности использования аудиторного фонда вуза), чел.; 165 - нормативное для зданий I и II степени огнестойкости количество людей, пропускаемых 1 м ширины двери без образования скоплений людей перед ней, чел.

Через дверной проем, отделяющий коридор от поэтажных холлов, эвакуируется N р = 67,2 чел., следовательно

67,2 / 165 = 0,41 м,

И поэтому может быть принята равной минимально допустимой ширине 1,2 м.

Перед следующим дверным проемом на путях эвакуации расположен дверной проем в лифтовый холл. Передним сливаются людские потоки, идущие с правой и левой частей коридора. Суммарное расчетное количество людей составляет N p = 2 × 67,2 = 134,4 чел. Требуемая расчетная ширина дверей этого выхода составит

134,4 / 165 = 0,81 м

И должна быть принята минимально допустимой, равной 1,2 м.

Поскольку количество людей, эвакуирующихся через последующий выход (выход из лифтового холла в лестничную клетку), равно количеству людей, эвакуирующихся через предыдущий выход, то ширина этого выхода должна быть такой же, т. е. d 3 = d 2 = 1,2 м.

Ширина лестничного марша согласно требованиям п. 3.19 должна быть не менее ширины выхода в лестничную клетку с этажа, т. е. d 4 = 1,2 м и соответствует минимальной (п. 3.19) для рассматриваемого вида зданий.

В Своде правил СП 1.13130.2009 \"Эвакуационные пути и выходы\" в п.5.3.21, для определения расстояния по путям эвакуации для зданий гостиниц, есть ссылка на графу 4 табл.5. Просим указать плотность людского потока, соответствующего графе 4. В таблице отсутствует нумерация граф, таблица поделена на два столбца, непонятно откуда вести начало отсчета граф, с начала таблицы или начала второго столбца.

В соответствии с п.5.2.23 СП 1.13130.2009 "Системы противопожарной защиты. Эвакуационные пути и выходы" (в редакции от 09.12.2010) расстояние по путям эвакуации от дверей наиболее удаленных помещений (кроме уборных, умывальных, курительных, душевых и других обслуживающих помещений), а в детских дошкольных учреждениях - от выхода из групповой ячейки до выхода наружу или на лестничную клетку должно быть не более указанного в таблице 2. Вместимость помещений, выходящих в тупиковый коридор или холл, должна быть не более 80 чел.

Приведенные в таблице 2 расстояния следует принимать для зданий: детских дошкольных учреждений - по гр.6; стационаров лечебных учреждений - по гр.5. Для остальных общественных зданий плотность людского потока в коридоре определяется по проекту.

Таблица 2

<*>, чел./кв.м

Исходя из анализа СП 1.13130.2009 возможно определить способ отчета граф (начало отсчета граф) - отчет ведется с начала таблицы (к примеру: гр.6 выделена полужирным шрифтом и подчеркнута).

В соответствии с п.5.3.21 СП 1.13130.2009 "Системы противопожарной защиты. Эвакуационные пути и выходы" (в редакции от 09.12.2010) расстояние по путям эвакуации от дверей наиболее удаленных помещений (кроме уборных, умывальных, курительных, душевых и других обслуживающих помещений) до выхода наружу или на лестничную клетку должно быть не более указанного в таблице 5. Вместимость помещений, выходящих в тупиковый коридор или холл, должна быть не более 80 чел.

Приведенные в таблице 5 расстояния следует принимать для зданий гостиниц по гр.4. Для остальных общественных зданий плотность людского потока в коридоре определяется по проекту.

Таблица 5

Класс конструктивной пожарной опасности здания

Расстояния, м, при плотности людского потока при эвакуации <*>, чел./кв.м

А. Из помещений, расположенных между лестничными клетками или наружными выходами

Б. Из помещений с выходами в тупиковый коридор или холл

<*> Отношение числа эвакуирующихся из помещений к площади пути эвакуации.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав