24.10.2020

Акустический расчет. Акустический расчет системы вентиляции и кондиционирования в современных зданиях. Акустическая постоянная помещения


Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.

  • Выбор облицовочных материалов
  • Распределение акустических систем
  • Вывод результатов расчета



Правильное размещение аппа ратуры при любых акустических характеристиках зала позволяет получить хорошее качество восприятия различных звуков: речи, музыки, шумов. В пространстве расположения зрителей, участвующих в мероприятии, требуется обеспечить нужную громкость, разборчивость и звучание без искажений во всем диапазоне частот аудио сигнала. С этой целью предлагаем услугу проведения профессионального акустического расчета . Он позволяет выбрать облицовочный материал поверхностей, разборчивость речи и состав аудиосистемы.

Нашей компанией проводятся электро-акустические расчеты для различных объектов: стадионов , бассейнов , теннисных кортах , прочих спортивных объектов , концертных залов , ресторанов , открытых площадок , Храмов , залов для проведения концертов и конференций . Рассчитывая акустику, специалисты учитывают особенности архитектуры помещения и специфику проводимого в нем мероприятия. Требуемая оптимальная величина звукового давления различна в случаях трансляции объявлений диктора, фонового музыкального сопровождения, концерта звезды или классической музыки.

При расчете звуковой аппаратуры для конкретного зала, проводится анализ помещения. На его основании выбирают оптимальное распределение звукового поля и места размещения колонок. Используются план, разрезы помещения, описание отделочных материалов потолка, стен.

Чтобы заказать акустический расчет , следует предоставить исходные данные с указанием габаритных размеров площадки, высоту потолка, материалы, характер мероприятия. Предоставляют чертежи либо эскизы. При необходимости исполнителем проекта на месте проводятся замеры.

При расчете мощности акустической системы как один из параметров учитывается уровень шума. Он зависит от числа людей в зале и их действий. Большее звуковое давление требуется на танцплощадке. Имеет значение также удаленность слушателей от источников звукового сигнала. Их размещают таким образом, чтобы обеспечить равномерность звукового поля для всех зрительских мест. Если в помещении имеются балконы и бельэтаж, то для них добовляются линии задержки и расчеты проводятся для каждой зоны совокупно.

Воспользовавшись предложенной компанией услугой проведения расчета и подбора акустической системы, можно организовать качественную трансляцию звука в любом месте: в зале ресторана, клуба или на стадионе. По нашим расчетам, наши специалисты выполняют также установку аппаратуры и ее настройку.

Основой проектирование звуковой системы или системы озвучивания помещений является акустический расчет. С помощью акустического расчета можно понять какие акустические системы лучше всего выбрать для данного зала и как лучше всего их расположить для обеспечение равномерного распределения звука. С помощью расчета звука так же есть возможность согласовать с заказчиком в каких зонах нужно изменить уровень громкости звукового сигнала для обеспечения комфортности зрителей. Еще одна задача которую можно выполнить с помощью акустического расчета это расчет звукопоглощения, подбор облицовочных материалов зала или помещения, где будет установлена звуковая система, для обеспечении качественной разборчивости речи и хорошего восприятие музыки.

Вопрос акустической обработки различных помещений является очень актуальным в настоящее время. С появлением новых моделей звукозаписывающей и звуковоспроизводящей аппаратуры она стала обязательной.

Современная промышленность предлагает огромный выбор отделочных материалов с различными частотными свойствами, что позволяет при правильном их выборе получить необходимые частотные характеристики помещений кинозалов, студий звукозаписи, речевых студий, концертных залов, вокзалов, аэропортов, конференц-залов, ночных клубов и множества других.

Выбор материалов производился по различным критериям, в том числе экономическому. Таким образом, можно выбрать недорогие материалы, но при этом все требования к частотным характеристикам помещения выполняются. Правильность выбора материалов будет подтверждена расчетом частотных характеристик.



Для создания модели под акустический расчет необходимы все размеры зала. В специализированной программе EASE создается 3D-модель зала точная копия, со всеми размерами, в которой подбираются материалы по коэффициенту звукопоглощения для достижения рекомендуемого времени реверберации под определенный тип зала и его назначения.

На рисунке показаны графики для различных залов:

  • 1 - залы для ораторий и органной музыки;
  • 2 - залы для симфонической музыки;
  • 3 - залы для камерной музыки, залы оперных театров;
  • 4 - залы многоцелевого назначения, залы музыкально-драматических театров, спортивные залы;
  • 5 - лекционные залы, залы заседаний, залы драматических театров, кинозалы, пассажирские залы.

Как только рекомендуемое расчетное время реверберации достигло нужного результата, в модели зала устанавливаются симуляторы акустических систем (громкоговорителей). Файлы-симуляторы громкоговорителей находятся в базе программы акустического расчета EASE и периодически пополняется. В 3D-модели зала (помещения) можно распределить симуляторы акустических систем как угодно, для этого специалисты пользуются определенным правилам которые необходимо соблюдать для озвучивания залов и других помещений. Как и в реальности акустические системы можно устанавливать на основание (например: на пол или на сцену), на высоте (подвесные громкоговорители) и встраивать в потолок или в стену.

При расчете программа будет выдавать несколько параметров, по которым можно сформировать благоприятную акустическую картинку.

Звуковое давление - расчет

Данный параметр описывает распределение звукового давления по площади зрительской зоны без учета отражений. Величина неравномерности: разница между максимальным и минимальным значением давления характеризует корректность применения акустических систем и мест их размещения.

Коэффициент потери согласных

Коэффициент потери согласных или ARTICULATION LOSS - графическое отображение потери артикуляции согласных в процентах. Это обратный критерий, 0% - идеальное значение параметра, описывающее отсутствие потери согласных; 100% - наихудшее значение параметра, описывающее полную потерю согласных.

  • от 0% до 7% - наилучший результат;
  • от 7% до 11% - хороший результат;
  • от 11% до 15% - удовлетворительный результат;
  • выше 15% - плохой результат.

В акустике термин "разборчивость" обозначает возможность слышать и правильно различать все фонемы, т.е. составные элементы языка. Разборчивость речи - самый важный параметр при оценке качества воспроизведения звука, и зависит, прежде всего, от правильного понимания согласных букв. Реверберация и высокий уровень фонового шума искажают разборчивость речи. Процент "потерянных" согласных букв дает оценку разборчивости сообщения и обозначается ALCons.

При акустическом сигнале, таком как речь, чрезвычайно изменчивом во времени и при всевозможном шуме окружающей среды, достаточно высокое соотношение сигнал/шум (хотя бы 10 дБ) способствует наилучшему восприятию сообщения. Разборчивость уменьшается при увеличении расстояния между источником и слушателем до предельного расстояния. Для больших расстояний разборчивость остается постоянной, каким бы ни было расстояние до слушателя, но зависит от времени реверберации.

Любое положение слушателя характеризуется определенным значением Alcons. Уменьшение этого значения довольно сложно, т. к. предполагает изменение геометрии помещения и/или имеющихся в нем материалов.

Разборчивость речи

Разборчивость речи оценивается с помощью коэффициента STI . Данный параметр является главным коэффициентом для оценки качества звучания музыкальной системы. Для различных видов помещений или задач существуют свои диапазоны, в предел которых необходимо, чтобы значение коэффициента STI уложилось.

Коэффициент STI зависит от всех параметров: размеры помещения, дальность излучателя звука, уровень шума, зрителей, облицовка помещения, время реверберации, уровень звукового давления.

  • от 0,6 до 1 - наилучший результат;
  • от 0,45 до 0,6 - хороший результат;
  • от 0,3 до 0,45 - Удовлетворительный результат;
  • от 0 до 0,3 - плохой результат.

Коэффициент музыкальной ясности.

Коэффициент музыкальной ясности С80.

  • 0дБ -для органной, романтическая музыки;
  • +2дБ -для классической муз., хора, церковного пения;
  • +4дБ -для поп. Музыки;
  • +6дБ -для рок-н-ролла.

Наша компания производит профессиональный акустический расчет любой сложности, специалисты прошедшие обучение специализированной программы EASE имеют сертификат, который выдается в центре обучения "AFMG" в г. Берлине, что подтверждает ниже предоставленный сертификат:

Акустический расчет помещения необходим для точной установки акустических систем в зале. Так же акустический расчет производится для оптимизации акустических свойств помещения.

Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

Для этого необходимо выполнить акустический расчет, который включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

· определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

· определение требуемого снижения уровня звукового давления в расчетных точках;

· выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

· расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».


Определение ожидаемых уровней звукового давления в расчетных точках .

При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

А. Расчетная точка находится в помещении с одним источником шума.

L = L P +101g(Ф/4r 2 +4/B) (2.27)

где L - уровень звукового давления, дБ;

L p - уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника для направления в точку наблюдения;

r-расстояние от геометрического центра источника до расчетной точки,м;

В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

Б. Расчетная точка находится в помещении с несколькими источниками шума.

L=10lg(іФ/4г 2 +4/Ві) (2.28)

где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

Lpi -уровень звуковой мощности i - того источника, дБ;

m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

В . Расчетная точка расположена в изолируемом от источников шума помещении.

Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

Lp cyм=101g Lpi (2.30)

Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

Sorp - площадь ограждения, м 2 ;

R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

R = 201gQ + 201gf-54, (2.31)

где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

f- частота звука, Гц.

f rp =----------- , (2.32)

где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

с 1 - скорость распространения звуковых волн, м/с;

h - толщина преграды, см.

Определение требуемого снижения уровней звукового давления

Требуемое снижение уровней звукового давления L определяется по формуле:

L= L-L доп ()

где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

Методы и средства коллективной и индивидуальной

защиты от шума

После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

L=10, (2.32)

А 1 =В ш S/ В ш +S, (2.35)

S – общая площадь всех поверхностей помещения


Проектируемое здание нужно оборудовать устройствами оповещения людей о пожаре по 2 типу.

Для оповещения людей о пожаре будут использоваться оповещатели типа «Маяк-12-3М» (ООО «Электротехника и Автоматика», Россия, г. Омск) и световые оповещатели «ТС-2 СВТ1048.11.110» (табло «Выход») подключенные к прибору С2000-4 (ЗАО НВП «Болид»).

Для сети оповещения при пожаре применяется огнестойкий кабель КПСЭнг(А)-FRLS-1х2х0,5.

Для эл. питания оборудования по напряжению U=12 В применяется источник резервированного эл. питания «РИП-12» исп.01 с аккумуляторной батареей емк. 7 А ч. Аккумуляторные батареи источника эл. питания обеспечивают работу оборудования в течение не менее 24 часов в дежурном режиме и 1 час в режиме «Пожар» при отключении основного источника эл.питания.

Основные требования к СОУЭ изложены в НПБ 104-03 «Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях»:

3. Принятые расчетные допущения

Исходя из геометрических размеров помещений, все помещения делятся только на три типа:

  • «Коридор» -длина превышает ширину в 2 и более раз;
  • «Зал» — площадь более 40 кв.м. (в данном расчете не применяется).

В помещении типа «Комната» размещаем один оповещатель.

4. Таблица значений ослабления звукового сигнала

В воздушной среде звуковые волны затухают вследствие вязкости воздуха и молекулярного затухания. Звуковое давление ослабевает пропорционально логарифму расстояния (R) от оповещателя: F (R) = 20 lg (1/R). На рис.1 показан график ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R).


Рис. 1 — График ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R)

Для упрощения расчетов ниже приведена таблица реальных значений уровней звукового давления от оповещателя «Маяк-12-3М» на различных расстояниях.

Таблица — Звуковое давление, создаваемое одиночным оповещателем, при его включении на 12В на различном расстоянии от оповещателя.

5. Выбор количества оповещателей в конкретном типе помещений

На поэтажных планах обозначены геометрические размеры и площадь каждого помещения.

В соответствии с принятым ранее допущением, делим их на два типа:

  • «Комната» — площадь до 40 кв.м;
  • «Коридор» — длина превышает ширину в 2 и более раз.
  • В помещении типа «Комната» допускается размещение одного оповещателя.

    В помещении типа «Коридор» – будут размещаться несколько оповещателей, равномерно расположенные по помещению.

    Как результат – определение количества оповещателей в конкретном помещении.

    Выбор «расчётной точки» — точки на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума.

    Как результат – определение длины прямой, соединяющей точку крепления оповещателя с «расчётной точкой».

    Расчетная точка — точка на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума, согласно НПБ 104-03 п.3.15.

    На основании СНИП 23-03-2003 пункта 6 «Нормы допустимого шума» и приведённой там же «Таблицы 1» выводим значения допустимого уровня шума для общежития рабочих специалистов равно 60 дБ.

    При расчетах следует учитывать ослабление сигнала при прохождении через двери:

    • противопожарные -30 дБ(А);
    • стандартные -20 дБ(А)

    Условные обозначения

    Примем следующие условные обозначения:

    • Н под. – высота подвеса оповещателя от пола;
    • 1,5м — уровень 1,5 метра от пола, на этом уровне находится плоскость озвучивания;
    • h1 — превышение над уровнем 1,5 м до точки подвеса;
    • Ш — ширина помещения;
    • Д — длина помещения;
    • R — расстояние от оповещателя до «расчётной точки»;
    • L — проекция R (расстояние от оповещателя до уровня 1,5 м на противоположной стене);
    • S — площадь озвучивания.

    5.1 Расчет для помещения типа «Комната»

    Определим «расчётную точку» — точку, максимально удалённую от оповещателя.

    Для подвеса выбираются «меньшие» стены, противостоящие по длине помещения, в соответствии с НПБ 104-03 в п. 3.17.

    Рис. 2 — Вертикальная проекция крепления настенного оповещателя по НПБ

    Оповещатель располагаем по середине «Комнаты» — по центру короткой стороны, как изображено на рис.3

    Рис. 3 — Расположение оповещателя по середине «Комнаты»

    Для того, чтобы вычислить размер R, необходимо применить теорему Пифагора:

    • Д – длина комнаты, в соответствии с планом равна 6,055 м;
    • Ш – ширина комнаты, в соответствии с планом равна 2,435 м;
    • Если оповещатель будет размещаться выше 2,3 м, то вместо 0,8 м, нужно взять размер h1 превышающий высоту подвеса над уровнем 1,5 м.

    5.1.1 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-15,8)=89,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равнo 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -15,8 дБ в соответствии с рис.1 когда R=6,22 м.

    5.1.2 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    5.1.3 Проверка правильности расчета:

    Р =89,2 > Р р.т.=75 (условие выполняется)

    СОУЭ в защищаемом помещении.

    5.2 Расчет для помещения типа «Коридор»

    Оповещатели размещаются на одной стене коридора с интервалом в 4-ре ширины. Первый размещаются на расстоянии ширины от входа. Общее количество оповещателей исчисляется по формуле:

    N = 1 + (Д – 2*Ш) / 3*Ш= 1+(26,78-2*2,435)/3*2,435=4 (шт.)

    • Д – длина коридора, в соответствии с планом равна 26,78 м;
    • Ш – ширина коридора, в соответствии с планом равна 2,435 м.

    Количество округляется до целого значения в большую сторону. Размещение оповещателей представлено на рис. 4.

    Рис.4 — Размещение оповещателей в помещении типа «Коридор» при ширине менее 3-х метров и расстояние «до расчётной точки»

    5.2.1 Определяем расчётные точки:

    «Расчётная точка», находится на противоположной стене на удалении в две ширины от оси оповещателя».

    5.2.2 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-14,8)=90,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равно 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -14,8 дБ в соответствии с рис.1 когда R=5,5 м.

    5.2.3 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    Р р.т. = N + ЗД =60+15=75 (дБ)

    • N – допустимый уровень звука постоянного шума, для общежитий равна 75 дБ;
    • ЗД – запас звукового давления, равный 15 дБ.

    5.2.4 Проверка правильности расчета:

    Р=90,2 > Р р.т=75 (условие выполняется)

    Таким образом, в результате расчетов, выбранный тип оповещателя «Маяк-12-3М» обеспечивает и превышает значение звукового давления, тем самым обеспечивая четкую слышимость звуковых сигналов СОУЭ в защищаемом помещении.

    В соответствии с расчетом, выполним расстановку звуковых оповещателей см. рис.5.

    Рис.5 — План размещения оповещателей на отм. 0.000

Защита помещений от шума в настоящее время особенно актуальна, поскольку традиционные ограждения уступили место более легким конструкциям индустриального типа, к тому же уровень шума по мере развития промышленности и транспорта постоянно возрастает.

Звук представляет собой колебательное движение упругой среды (газообразной, жидкой и твердой). В упругих средах звук распространяется с определенной скоростью с , зависящей главным образом от свойств среды. Скорость звука в воздухе около 340м/с , в воде 1450м/с , в стали 5100м/с . Ухо человека воспринимает звуки в диапазоне частот от 20 до 20 000 Гц .

Интервал частот, ограниченный двумя частотами, из которых верхняя вдвое больше предыдущей нижней, называют октавой.

При известной скорости звука с частота f определяет длину волны λ и период колебаний Т:

λ=с/f; Т=λ /с. (21)

Одной из основных физических характеристик звука является сила, или интенсивность, звука I , которая определяется как количество звуковой энергии, переносимой звуковой волной в 1с через площадку в 1см 2 (или м 2 ), перпендикулярную направлению движения звуковой волны. Измеряют интенсивность звука в ваттах на см 2 (или на м 2 ).

Область звуковых колебаний, воспринимаемых человеком, показана на рис. 21, из которого следует, что пороги слышимости, болевых ощущений зависят не только от силы звука, но и от частоты. Звуки одинаковой силы, но разной частоты воспринимаются как различные по громкости. В связи с чем для количественной оценки восприятия звука введено понятие эталона звука по частоте. В качестве эталона сравнения звуков различны частот принят звук частотой 1000 Гц, в полосе которого органы слуха человека обладают наибольшей чувствительностью.

В акустике принята логарифмическая система единиц. Кроме чисто математических удобств это обусловлено тем, что по гипотезе Вебера- Фехнера восприятие звука человеком пропорционально не абсолютному изменению силы звука, а логарифму этого изменения.

В логарифмической системе единиц десятичный логарифм отношения какой-либо величины А к величине А 0 , принятой за эталон сравнения, называют уровнем величины А, измеряемой в беллах (Б ), и обозначают через L A:



L A =lg(A/A 0), (22)

Белл довольно крупная единица. В акустике принята единица, в десять раз меньшая, называемая децибелом (дБ ). Уровень величины А в децибелах выражают так:

L A = 10lg(A/A o), (23)

При определении уровней силы звука за эталон сравнения принята сила звука J 0 на пороге слышимости при частоте звука 1000Гц , равная 10 16 Вт/см 2 . Таким образом, уровень силы звука, дБ , выражают формулой:

L J = 10lg(J/J o). (24)

Важной физической характеристикой звука является звуковое давление Р, определяемое как разность между мгновенным значением полного давления в звуковой волне и средним в данной точке при отсутствии звука. При расчетах пользуются среднеквадратичным звуковым давлением, которое для чистого тона определяют по формуле:

Р ср = Р max / , (25)

Сила звука пропорциональна квадрату звукового давления:

J = P 2 ср / ρc, (26)

где ρc - произведение плотности среды на скорость распространения звука в ней, называемое удельным акустическим сопротивлением среды.

Уровень силы звука через уровень звукового давления выражают по формуле:

L J = 20lg(Р/Р o), (27)

где Р - звуковое давление звука данной частоты, Па (дин);

Р 0 - то же звука, частотой 1000Гц на пороге слышимости, равное

2·10 -5 Па (2·10 -4 дин/см 2 ).

Различают два вида звуков: воздушные (возникающие и распространяющиеся в воздухе) и ударные (распространяющиеся в твердых телах при механическом воздействии на них). Воздушный шум передается через ограждения (главным образом, щели, трещины, отверстия или сквозные поры); он возникает также вследствие колебаний тонкостенных конструкций. Ударный звук передается по конструкциям в зависимости от степени однородности материала и его модуля упругости.

Изоляцию ограждением воздушного шума R в оценивают по снижению уровня шума при прохождении через ограждение (с учетом звукового поглощения защищаемого помещения):

R в = L 1 - L 2 + lg (S/A), (25)

где L 1 и L 2 - средние уровни звукового давления до и после прохождения звука через ограждение;

S - площадь ограждающей конструкции;

А - общее звуковое поглощение защищаемого помещения.

Ударный звук особенно передается через перекрытия. Он возникает в самой конструкции. Поэтому изоляцию перекрытиями ударного шума оценивают по уровню шума над перекрытием при стандартном ударном воздействии на перекрытие. В качестве последнего принимают удары свободно падающего с высоты 4см тела массой 0,5кг с частотой 10 ударов в 1с .

Для этого случая определяют приведенный уровень ударного шума над перекрытием:

L п = L y -10lg(A 0 /A), (26)

где L y - уровень ударного шума относительно порогового;

A 0 - стандартное звуковое поглощение, равное 10м 2 ;

А - общее звуко­вое поглощение помещения.

Звукоизоляция ограждения зависит не только от массы конструкции, но и от частоты изолируемого звука. Поэтому для оценки звукоизолирующей способности ограждения необходимо знать частотную характеристику - кривую, показывающую зависимость звукоизоляции конструкции в децибелах от частоты изолируемого шума в пределах октавных полос со среднегеометрическими частотами в 63, 125, 250, 500, 1000, 2000, 4000 и 8000Гц .

За расчетные и нормируемые параметры звукоизоляции ограждающих конструкций принимают так называемый индекс изоляции воздушного шума ограждающей конструкцией И в в дБ и индекс приведенного уровня ударного шума под перекрытием И у.

Для определения индексов изоляции сравнивают измеренные или рассчитанные характеристики с нормативными, приведенными на рис 25.

Индекс изоляции воздушного шума ограждающей конструкции обозначают формулой:

И в = 50 + Δ в, (27)

А индекс приведенного уровня ударного шума под перекрытием:

И у =7О - Δ у. (28)

В этих формулах значения 50 и 70дБ соответствуют индексам изоляции воздушного шума (50дБ ) и индексу приведенного уровня ударного шума под перекрытием (70дБ ) нормативных частотных характеристик. Поправки Δ в и Δ у определяют как средние отклонения частотных характеристик изоляции данного ограждения от нормативных.

а) изоляции воздушного шума ограждающей конструкции;

б) приведенного уровня ударного шума под перекрытием

Рис. 25. Нормативные частотные характеристики

В ориентировочных расчетах индекс изоляции воздушного шума однослойными ограждениями объемной массой от 100 до 1000кг/м 2 можно определить в дБ по формулам:

И в = 23 lgKm- 10 дБ при m> 200 кг/м 2 ; (29)

И в = 13 lg Km + 13 дБ при m < 200 кг/м 2 , (30)

где m - масса 1м 2 ограждения;

K -коэффициент, принимаемый в зависимости от материала и типа конструкции (для сплошных ограждающих конструкций из материалов плотностью более 1800 кг/м 3 K = 1; для ограждающих конструкций из материалов плотностью 1200-1300 кг/"м 3 из бетонов на гипсовом вяжущем K = 1,25).

Для ограждающих конструкций с круглыми пустотами из железобетона и бетона плотностью более 1800кг/м 3 коэффициент K определяют по формуле:

K = 1,86 / b h 3 пр , (31)

где J - момент инерции сечения, м 4 ;

b - ширина его, м;

h пр - приведенная толщина сечения, м.

Для ограждений из бетонов на пористых заполнителях и цементном вяжущем коэффициент К следует определять по формуле:

К = 2,26 /ρ, (32)

где Е - модуль упругости материала, кгс/м 2 ;

ρ - плотность материала, кг/м 3 .

Нормативные индексы изоляции воздушного шума ограждающими конструкциями И н в и приведенного уровня ударного шума под перекрытием И н у жилых зданий приведены в табл. 37.

Для повышения звукоизолирующей способности стен, перегородок и перекрытий без увеличения их массы целесообразно применять раздельные конструкции со сплошной воздушной прослойкой без жесткой связи между элементами ограждения.

Звукоизоляционные свойства ограждения при наличии сплошной воздушной прослойки повышаются в связи с тем, что воздух упруго воспринимает колебания одной стенки и передает их второй стенке ослабленными.

С увеличением толщины воздушной прослойки звукоизоляция также увеличивается, однако из-за необходимости ограничивать общую толщину ограждения воздушный промежуток обычно делают не более 60 мм.

Для звуковой изоляции междуэтажных перекрытий применяют упругие прокладки, которые гасят звуковые колебания, возникающие при ударах.

Таблица 37

Нормативные величины звукоизолирующей способности ограждающих конструкций жилых зданий

Акустика в дизайнерских решениях . Звук, возникший в помещении, частью поглощается, а частью отражается ограждающими конструкциями, оборудованием, зрителями. Уровнями процессов отражения и поглощения звука определяются акустические свойства помещения. Для хорошей акустики необходимо обеспечить по возможности равномерное распределение звука в объеме помещения, особенно в зоне зрителей. Процесс затухания отраженных звуков должен идти так, чтобы не искажался прямой звук от источника, а усиливался при восприятии слушающими.

Одним из важнейших показателей акустических свойств помещений является реверберация.

Реверберацией называют наличие остаточного звучания в помещении после прекращения основного звука вследствие многократных отражений звуковых волн от поверхностей стен, потолка и др.

Продолжительность реверберации, или время затухания отраженного звука до порога слышимости, зависит как от акустических свойств помещения, так и от мощности источника звука. Для акустического расчета и проектирования требуется характеристика, которая зависит только от акустических свойств помещения. Такой характеристикой является скорость затухания отраженного звука, или стандартная реверберация.

Под стандартной реверберацией Т ст понимают то время, за которое плотность звуковой энергии отраженного звука уменьшается в 1 млн раз или уровень звукового давления снижается на 60дБ.

При продолжительной реверберации помещение становится гулким, при весьма короткой - глухим. Время реверберации зависит от объема и общего звукопоглощения помещения и объектов, находящихся в нем, а также от частоты звука. Опытным путем установлен оптимум стандартной реверберации T опт - такая длительность ее, при которой создаются наилучшие условия слышимости в данном помещении. Оптимум реверберации в зависимости от объема зала указан в табл. 38.

Оптимальное время реверберации T опт для частоты 500Гц можно приближенно определить по формуле:

T опт =K lgV, (33)

где V - объем помещения;

К - коэффициент, принимаемый:

0,41 - для оперных театров и концертных залов;

0,36 - для драматиче­ских театров;

0,29 - для кинотеатров и аудиторий.

В диапазоне низких частот оптимальную реверберацию можно увеличить на 20-30 %. А в диапазоне высоких частот – уменьшить на 10-15 %.

Таблица 38

Оптимальное время стандартной реверберации Т опт

Объем помещения, м3 Т опт, с, при Объем помещения, м3 Т опт, с, при
Частоте 125 Гц Частоте 500 Гц Частоте 125 Гц Частоте 500 Гц
1,2 1,0 1 000 1,45 1,2
1,3 1,1 1 500 1,55 1,25
1,35 1,15 2 000 1,6 1,28
3 000 1,75 1,35 8 000 2,15 1,5
4 000 1,8 1,38 9 000 2,25 1,53
5 000 1,9 1,4 10 000 2,3 1,55
6 000 2,0 1,45 15 000 2,4 1,6
7 000 2,05 1,48 20 000 2,45 1,63

Примечание. Промежуточные значения времени Т опт определяют по интерполяции.

Для обеспечения требуемой акустики в помещении используют материалы, хорошо поглощающие звук. Поглощение звука характеризуется коэффициентом звукопоглощения α, выражающим отношение звуковой энергии, поглощенной поверхностью ограждения, к звуковой энергии, падающей на него. За единицу поглощения звука принят Сэбин, характеризующий полное поглощение звука поверхностью, отнесенное к единице площади (поглощение 1м 2 открытого окна).

Коэффициент звукопоглощения материала изменяется в зависимости от частоты звуков и направления звуковой волны относительно поверхности. В большинстве случаев звуки низкой частоты поглощаются материалом хуже, чем высоких частот.

Реверберация увеличивается с увеличением объема помещения и уменьшением величины общего поглощения помещения. Время реверберации Т сг должно быть равно оптимальному Т опт . Так как коэффициенты звукопоглощения обычных строительных материалов (штукатурка, кирпич, бетон, дерево) сравнительно невелики, то время стандартной реверберации зрительных залов, как правило, превышает время оптимальной реверберации. В связи с этим для уменьшения гулкости часть ограждений зала облицовывают звукопоглощающими материалами и устанавливают резонаторы.

При акустическом проектировании зрительных залов реверберацию определяют для частот в 125, 500 и 2000Гц . Расчет акустики зала рекомендуется вести с учетом заполнения его зрителями на 70%.

Для хорошего восприятия звука в помещении требуется равномерное распределение звуковой энергии путем регулирования отражения звука.

Акустические качества помещений характеризуются степенью разборчивости речи во всех его точках. Критерием служит слоговая артикуляция , показывающая процент правильно воспринятых слушателем слогов. Разборчивость считается отличной при 96% правильно воспринимаемых слогов, хорошей 96-85%, удовлетворительной 85-75%, трудноразборчивой 76-65%, недопустимой 65% и ниже.

Артикуляция речи определяется по формуле:

А = 0,96 К 1 К 2 К 3 К 4 , (34)

где К 1 - коэффициент, учитывающий уровень громкости звука;

К 2 - коэффициент, учитывающий время реверберации;

К 3 - коэффициент, учитывающий шумовой фон в помещении;

К 4 - коэффициент, учитывающий форму помещения (в прямоугольных и секториальных помещениях 1,0; в малых помещениях с большим звукоотражением 1,06).

Для расчетов можно пользоваться табл. 39.

Таблица 39

Значения коэффициентов К 1 , К 2 и К 3 и процентная слоговая артикуляция

При расчетах времени реверберации следует учитывать, что фактическое звукопоглощение всегда превышает расчетное за счет неучитываемых расчетом локальных (обычно сосредоточенных) звукопоглощений.

Учитывать добавочное звукопоглощение можно путем введения среднего коэффициента добавочного звукопоглощения, который рекомендуется принимать для частот 500-2000 Гц равным α = 0,04.

Пример 7

Для конференц-зала с размерами 12х24 и высотой 6 м рассчитать и оценить артикуляцию.

1. Определяем время реверберации.

Оптимальное время реверберации зависит от длины пробегов отраженных звуков, следовательно, от объема помещения и назначения. Его приближенно можно определить по формуле:

Т опт = К · lgV,

где Т опт – оптимальное время реверберации для звуков силой 500Гц ;

V – объем помещения, м 3 ;

К – коэффициент, зависящий от назначения помещений, принимаемый равным для оперных и концертных залов 0,41; драматических залов 0,36; кинозалов и аудиторий 0,29.

V = 12 х 24 х 6 = 1728 м 3

Следовательно,

Т опт = К· lg V = 0,41· lg1728 = 0,41 ·3,237 = 1,33с

2. Определяем артикуляцию:

При Т = 1,33 сек коэффициенты К 1 = 0,95; К 2 = 0,95; К 3 = 0,83; К 4 = 1,0

А = 0,96 х 0,95 х 0,95 х 0,83 х 1,0 х 100% = 75,6 %.

ЗАДАНИЕ 6

Для помещения, характеристики которого заданы в табл. 40, рассчитать и оценить артикуляцию.

Таблица 40

Индивидуальные варианты задания

№ варианта Размеры, м Назначение помещения Значение К 4
Длина Ширина Высота
Аудитория 1,06
Читальный зал 1,06
Аудитория
Лекционный зал
Конференц-зал
Концертный зал
Оперный зал
Кинозал
Лекционный зал
Драматический зал
Кинозал
Концертный зал
Драматический зал 1,06
Кинозал
Оперный зал
Аудитория 1,06
Читальный зал 1,06
Аудитория
Лекционный зал 1,06
Конференц-зал 1,06
Концертный зал
Оперный зал
Кинозал
Лекционный зал
Драматический зал
Кинозал
Концертный зал
Драматический зал
Кинозал
Оперный зал

ЛИТЕРАТУРА

1 Архитектурная физика: Учебник для вузов / Под ред. Н.В. Оболенского. – М. : Архитектура – С, 2005.

2 Дятков С.В., Михеев А.П. Архитектура промышленных зданий. – М.: АВС, 1998.

3 Защита от шума в градостроительстве / Осипов Г.Л., Коробков В.Е. и др. – М.: Стройиздат, 1993. (Справочник проектировщика).

4 Ковригин С.Д., Крышов С.П. Архитектурно – строительная акустика. – М.: Высшая школа, 1986.

5 Краткий справочник архитектора (Гражданские здания и сооружения) Коваленко Ю.Н., Шевченко В.П. - Киев: Будiвельник, 1975.

6 Лицкевич В.К. Жилище и климат. – М.: Стройиздат, 1984.

8 СНиП 2.01.01-82. Строительная климотология и геофизика.

9 Строительная климотология: Справочное пособие к СНиПу. – М.: Стройиздат, 1990.

10 СНиП II – 3 – 79*. Строительная теплотехника. – М.: Стройиздат, 1979.

11 СНиП II – 4 – 79. Естественное и искусственное освещение.

12 СНиП II – 12 – 77. Глава «Защита от шума». – М. Стройиздат, 1978.

Ресурсы Интернет.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав