25.09.2019

Продукты окисления каких веществ может изменить катализатор. Смотреть что такое "Катализатор" в других словарях


Катализатор - это устройство с простой конструкцией, однако его роль достаточна велика. В результате работы двигателей внутреннего сгорания образуется масса вредных веществ, которые через выходной тракт выбрасываются в атмосферу. Каталитический преобразователь позволяет уменьшить токсичность выхлопных газов.

История создания и внедрения

В 60-х годах правительственные органы всех развитых стран мира решили обратить особое внимание на выбросы из выхлопных труб машин, ведь законом загрязнение атмосферы автомобилями не регулировалось.

В 1970 году приняли первые стандарты, которые предъявили автозаводам. В них были указания по содержанию в выхлопных газах вредных веществ. Эти стандарты требовали, чтобы в автомобилях использовались преобразователи, которые бы нейтрализовали вредное воздействие угарного газа и углеводорода. В 1975 году использование катализаторов стало обязательным.

Нейтрализаторы токсичных газов

Каждый день на дорогах появляется все больше и больше машин. Автомобиль является мощным источником, загрязняющим атмосферу. Особенно наполнен газами воздух в больших городах и мегаполисах.

Постоянно издаются все новые и новые законы, которые должны ограничивать допустимые уровни выброса газов при работе ДВС. Производители автомобилей стараются соответствовать этим нормам, поэтому постоянно усовершенствуют топливную и выхлопную системы, а также изменяют конструкцию мотора.

Немного о выбросах

Чтобы сделать количество выбросов в атмосферу как можно меньше, современные двигатели внутреннего сгорания постоянно и очень тщательно контролируют топливо, которое в них сгорает. Это нужно для того, чтобы воздушно-топливная смесь была идеальной. При таком соотношении топливо должно сгореть вместе со всем кислородом, находящимся в воздухе. При движении машины это соотношение не идеальное. Иногда смесь бедная, иногда более обогащенная.

Основные загрязнители

Сегодня основными загрязнителями воздуха считают азот в газообразном состоянии (N2), диоксид углерода (CO2), а также водяной пар.

Если рассматривать по сути, то эти продукты горения не опасны. Но ученые считают, что диоксид углерода влияет на глобальное потепление. В результате неидеального сгорания топлива и воздуха выделяется небольшое количество особо вредных газов и веществ. Именно ради них и создавались эти устройства. К особо опасным веществам можно отнести окись углерода, различные углеводороды, оксиды азота.

Принцип работы катализаторов

Если вы вспомните школьный курс химии, то катализатор - это специальное вещество, позволяющее ускорить химическую реакцию или стать ее причиной. При этом в продуктах реакций его не будет. Оно просто участвует в процессе, однако само по себе не является реактивом или продуктом.

В нейтрализаторах или преобразователях, которые установлены в автомобилях, различают два вида катализаторов. Это восстанавливающий и окислительный. Оба изготовлены из керамики, которая покрыта металлами. В основном в качестве металлов применяют платину или родий. Идея здесь в создании такой структуры, которая при прохождении выхлопных газов через нее задействует максимальную площадь, при этом количество катализирующих веществ должно быть минимальным, так как цена их достаточно высока.

В некоторых преобразователях применяют золото с различными традиционными примесями. Оно способно повысить степень окисления. Это необходимо для того, чтобы можно было снизить выбросы вредных газов.

Виды преобразователей

Многие современные выпускные и выхлопные системы оснащаются двумя видами преобразователей нейтрализаторов. То есть чтобы для каждого вещества был свой элемент, который сведет к минимуму выброс.

Восстанавливающий катализатор - это самый первый этап процесса нейтрализации и преобразования. Здесь в составе чаще всего родин, а также платина. Он призван нейтрализовать оксид азота в выхлопных газах. В результате образуется кислород и азот.

Окислительный преобразователь является вторым в этой цепочке. Он призван снизить количество несгоревшего горючего, а также уменьшить количество окиси углерода. В результате работы этого преобразователя образуется СО2 (углекислый газ).

Что касается конструкций данных устройств, то существуют «соты» и «керамические бусины». В современных автомобилях более распространены сотовые структуры.

Катализатор ВАЗ

В автомобилях АвтоВаз в качестве нейтрализатора используется керамическая структура, покрытая платиной или палладием. Восстановительный преобразователь на большинстве моделей использует в качестве нейтрализующих веществ родий и платину.

Люди на особо любят эти устройства. Во-первых, эта штука стоит достаточно дорого, во-вторых, в нашей стране из-за низкокачественного топлива преобразователи часто выходят из строя. Кто-то заменяет их, а кто-то использует катализаторы-пламегасители.

Пламегаситель

Это некий заменитель для нейтрализатора. Основная задача, которая перед ним ставится - это выравнивание потока выхлопа. Благодаря нему работа выхлопной системы становится более правильной, а также долговечной. За счет использования этих конструкций можно добавить машине мощности, и звук мотора будет ровный.

Основное отличие в том, что пламегаситель не умеет нейтрализовать вредные выбросы. Однако, как свидетельствуют отечественные нормы, выхлоп совершенно любой иномарки намного ниже допустимых. Сегодня многие в своих автомобилях меняют катализатор («Форд Мондео» чаще всего подвергается этому) на пламегасители. Считается, что с этими устройствами двигатель лучше «дышит».

Устройство пламегасителей

Конструкция аналогичная обычным резонаторам. Поэтому в европейских странах такого понятия не существует. Этот узел называется не иначе, как предварительный резонатор.

Существуют прямоточные пламегасители и устройства с диффузором. Последним называют воронку, которая приварена к трубе в ее середине. Она принудительно загоняет выхлопные газы в пламегаситель.

Вопросы замены катализаторов

Иногда на отечественных автомобилях, да и на иномарках, появляется необходимость заменить нейтрализатор. Например, катализатор 2114-го ВАЗа существенно улучшает динамику машины, а также позволяет снизить расход топлива.

К необходимости замены этой детали выхлопной системы приходят только в двух случаях. Считается, что такой элемент забирает часть мощности авто. Однако увеличить мощность таким образом - весьма сомнительное мероприятие.

Во втором случае деталь вышла бы из строя. Так бывает, если часто заправлять машину некачественным топливом. Также это случается при некоторых неисправностях мотора, которые приводят к расходу масла и забиванию сот. Ремонт катализатора необходим, если были механические повреждение на его корпусе. Кроме того, преобразователь может прийти в негодность в связи с попаданием в выхлопы силикона. Еще замена требуется в случае перегрева. Если устройство нагрелось свыше 970 градусов, то однозначно нужно менять.

Как проверить катализатор?

Если вы заметили, что машина до какой-то скорости двигается с большим трудом, а затем работает в обычном режиме, или если скоростные способности машины постепенно снижаются, либо ваш мотор не запускается вообще, то вам грозит ремонт катализатора.

Чтобы проверить эту деталь, необходимо провести демонтаж и осмотреть ее на просвет. Еще один способ - проверка давления в системе выпуска. Для этого необходимо на место датчика кислорода установить манометр и снять показания.

Обманка катализатора

Эти устройства призваны нейтрализовать токсичность выхлопных газов автомобиля, а также сделать работу мотора более тихой. Иногда нейтрализатор выходит из строя и ему необходима замена. Так как стоят эти детали недешево, то автолюбители ищут компромиссы.

Чтобы решить проблему с этой деталью, иногда автолюбители применяют так называемые эмуляторы. Существует два вида этих устройств, один из них механический, второй - электронный.

Механическая обманка катализатора представляет собой бронзовую или любую другую металлическую деталь, которая выдерживает высокие температуры. Нужно учитывать, что размер обманки должен совпадать с размерами преобразователя. Там, где эмулятор должен будет фиксироваться, нужно просверлить отверстия для подачи газов. В полости эмулятора есть крошка из керамики, которая покрыта каталитическим веществом.

Электронное устройство сделать самостоятельно уже не получится, однако стоит он значительно дешевле, чем штатный катализатор (цена здесь вполне существенная).

В автомобильных магазинах предлагаются достаточно технологичные модели, но это специальный эмулятор, оснащенный микропроцессором. Он заставляет блок управления работать правильно. Здесь никакого обмана нет.

Ценовой вопрос

Катализатор - это важная часть конструкции множества современных автомобилей. Основное предназначение этого устройства - нейтрализация вредных выбросов, идущих в атмосферу. Эта деталь не может служить вечно, поэтому рано или поздно придется ее менять.

Сегодня на автомобильных рынках можно купить катализатор (цена будет составлять от 4000 рублей и больше) для отечественных автомобилей. Например, оригинальная запчасть на машину ВАЗ стоит порядка 5160 рублей. Стоимость замены данной детали на некоторых иномарках может обойтись в 2400 рублей или больше, но поменять этот элемент можно и в собственном гараже, своими руками. Данная операция не требует особых усилий и наличия специальных инструментов.

Итак, мы выяснили, что такое автомобильный катализатор, для чего он используется и какова его стоимость. Выбор за вами!

Катализаторы обеспечивают более быстрый исход любой химической реакции. Реагируя с исходными веществами реакции, катализатор образует с ними промежуточное соединение, после чего это соединение подвергается преобразованию и в итоге распадается на необходимый конечный продукт реакции, а также на неподвергшийся изменениям катализатор. После распада и образования необходимого продукта катализатор снова вступает в реакцию с исходными реагентами, образуя все большее количество исходного вещества. Данный цикл может повторяться миллионы раз, и если извлечь катализатор из группы реагентов, реакция может длиться в сотни и тысячи раз медленнее.

Катализаторы гетерогенными и гомогенными. Гетерогенные катализаторы в ходе химической реакции образуют самостоятельную фазу, которая отделена разделяющей границей от фазы исходных реагентов. Гомогенные катализаторы, напротив, являются частью одной и той же фазы с исходными реагентами.

Существуют катализаторы органического происхождения, которые участвуют в брожении и созревании, они называются ферментами. Без их непосредственного участия человечество не смогло бы получать большую часть спиртных напитков, молочнокислых продуктов, продуктов из теста, а также мед и . Без участия ферментов был бы невозможен обмен веществ у живых организмов.

Требования к веществам катализаторам

Катализаторы, которые широко применяются в промышленном производстве, должны обладать целым рядом свойств, необходимых для успешного завершения реакции. Катализаторы должны быть высокоактивными, селективными, механически прочными и термоустойчивыми. Они должны обладать продолжительным действием, легкой регенерацией, устойчивостью к каталитическим ядам, гидродинамическими свойствами, а также небольшой ценой.

Современное применение промышленных катализаторов

В нынешнем высокотехнологическом производстве катализаторы применяются при крекинге нефтепродуктов, получении ароматических углеводородов и высокооктанового , получении чистого водорода, кислорода или инертных газов, синтезе аммиака, получении и серной кислоты без дополнительных затрат. Также катализаторы широко применяются для получения азотной кислоты, фталевого ангидрида, метилового и спирта и ацетальдегида. Наиболее широко применяемые катализаторы – это металлическая платина, ванадий, никель, хром, железо, цинк, серебро, алюминий и палладий. Также довольно часто применяются некоторые соли этих металлов.

ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.

Важнейшее свойство катализаторов – селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.

Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.

В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин «катализатор» (от греч. katalysis – расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая таким образом их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.

Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы X в Y весь этот процесс можно представить в виде

X + Кат. ® X-Кат. ® Y-Кат. ® Y + Кат.

Высвободившийся катализатор вновь связывается с X, и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта – вещества Y.

Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H 2 достаточно прочная и не разрывается при атаке молекулой CO. Катализатор сближает молекулы H 2 и CO, образуя с ними связи. После перегруппировки комплекс катализатор – реагенты диссоциирует с образованием продукта, содержащего атомы C, H и O.

Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H 2 . В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол:

Вначале молекулы СО и Н 2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.-CH 2 OH. После присоединения атома H комплекс распадается с высвобождением CH 3 OH и катализатора.

В присутствии никелевого катализатора как СО, так и Н 2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН 3 . Конечными продуктами реакции являются СН 4 и Н 2 О:

Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость – объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность – количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия – доля вещества, превращенного в данной реакции. Селективность – отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход – отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность – количество продуктов реакции, образующихся в единице объема в единицу времени.

Гейтс Б.К. Химия каталитических процессов . М., 1981
Боресков Г.К. Катализ. Вопросы теории и практики . Новосибирск, 1987
Ганкин В.Ю., Ганкин Ю.В. Новая общая теория катализа . Л., 1991
Токабе К. Катализаторы и каталитические процессы . М., 1993

Найти "КАТАЛИЗ " на

При попытке поджечь сахар он будет плавиться и обугливаться Положите на сахар горку пепла, который будет служить катализатором С пеплом сахар загорится! Сахар горит, если на него посыпать пеплом! При отсутствии пепла (катализатора) - сахар только обугливается Окисление спирта в присутствии медного катализатора

Вы когда-нибудь пробовали поджечь сахар? Казалось бы, сильно экзотермическая реакция С 12 Н 22 О 11 +12О 2 →12СО 2 +11Н 2 О должна идти легко. Не тут-то было - при сильном нагреве сахар плавится, приобретает коричневую окраску и запах карамели, но не загорается. И всё же сжечь сахар можно. Для этого надо посыпать его табачным пеплом и внести в пламя - тогда сахар загорится. Такое же воздействие на эту реакцию оказывают и некоторые другие вещества, например соли лития или оксид хрома (III).

Химические реакции, которые «не желают» протекать сами по себе или идут с очень малой скоростью и требуют дополнительного «стимула» - присутствия веществ, которые в результате реакции остаются неизменными, - происходят повсеместно. Это, во-первых, абсолютно все химические процессы, лежащие в основе жизнедеятельности клеток. Они протекают только в присутствии ферментов , а отсутствие в организме хотя бы одного из них нарушает обмен веществ и чревато тяжёлой болезнью или же просто несовместимо с жизнью.

Кроме того, к таким реакциям относится большинство крупнотоннажных процессов, используемых в химической промышленности. Получение серной кислоты , переработка нефти , синтез аммиака немыслимы без участия «посторонних веществ», называемых катализаторами . Как выглядел бы наш мир без катализаторов? Он был бы гораздо статичнее, ведь многие химические реакции просто не происходили бы. Впрочем, изучать химию всё равно было бы некому: жизнь в таком мире появиться не может.

Катализаторы позволяют проводить химические процессы при гораздо более мягких условиях. А кроме того, в присутствии катализаторов идут реакции, которые вообще невозможны без их участия ни в каких условиях.

При этом количество катализатора, необходимое для превращения огромной массы реагентов в продукты реакции, несоизмеримо мало. Одна молекула фермента катализирует разложение 5 млн. молекул сахара за 1 с!

Катализ и его секреты

Но в чём скрыта тайна веществ - катализаторов ? Давайте разберёмся, почему сахар и другие органические вещества самопроизвольно не превращаются в углекислый газ и воду - гораздо более энергетически выгодные (говорят ещё «термодинамически устойчивые») соединения. Разве это не удивительно? Ведь если положить, скажем, шарик на вершину горки, он тут же займёт более энергетически выгодное положение - скатится вниз. Если же его оградить барьером, он скатиться не сможет. Чтобы оказаться внизу и тем самым уменьшить свою потенциальную энергию, шарику нужно преодолеть барьер, а для этого ему нужно подвести дополнительную энергию.

Все существующие химические вещества, даже весьма термодинамически неустойчивые, окружены на своих энергетических «вершинах» подобными барьерами. Порой энергия, необходимая для их преодоления, сравнима с кинетической энергией теплового движения молекул. Тогда достаточно простого смешения реагентов - и реакция происходит при комнатной температуре. Нагревая реакционную смесь, можно преодолеть барьер чуть повыше. Но иногда он слишком высок, и в этом случае придётся или искать способы доставки необходимой энергии молекулам реагентов, или попытаться обойти энергетический барьер.

Как это сделать? Оказывается, катализатор может, подобно опытному проводнику, хорошо знающему местность, повести реакцию по совершенно иному пути. При этом её механизм претерпевает сильные изменения. Существует масса способов обойти энергетическую «гору». Каждый катализатор , работающий в конкретной реакции, выбирает для процесса свой путь. При этом новый маршрут может быть гораздо длиннее изначального: число промежуточных стадий и продуктов реакции иногда возрастает в несколько раз. Но зато количество энергии, требуемое на каждой стадии, оказывается существенно меньше, чем в отсутствие «проводника». В итоге, пройдя более длинный путь при помощи катализатора, реакция даёт желаемый результат значительно быстрее.

Однако «постороннее вещество» может воздействовать на ход реакции и противоположным образом: привести её к труднопреодолимому энергетическому барьеру. Тогда процесс замедляется. Такой «отрицательный» катализ называется ингибированием (от лат. inhibeo - «останавливаю», «сдерживаю»), а «катализаторы, действующие наоборот» - ингибиторами .

Зачем нужно замедлять скорость реакции? Существуют процессы, которые необходимы человеку, а также существуют такие процессы, проведение которых может пагубно сказаться как на человека, так и на предметах его обихода и окружающей среде. например появление ржавчины - коррозия металлов , гниение продуктов питания. Такими реакциями могут быть взрывы различных химических веществ, которые чувствительны к движению или сотрясению. Нужно учитывать, что химические реакции, в результате которых образуется лишь одно вещество - достаточно редкие. В основном при реакциях образуется более одного вещества. Особенно ярко такое явление наблюдается в органической химии.

В организмах живых существ и множестве других процессах, протекающих в нашей среде обитания часто необходимо, чтобы в процессе реакции получалось только одно нужное нам вещество или продукт реакции. Именно в этом случае применяется катализ . Грамотный подбор катализатора позволяет проводить химические процессы только в нужном для нас направлении и с получением требуемого нам вещества, при этом исключая выход других побочных эффектов реакции.

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным .

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов , каждый из которых ускоряет разные стадии реакции . Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня .

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

механизм катализа : 1)мех. стадийный(изменение пути реакции) 2)ассоциактивный 3)ферментативный 4) микрогетерогенный

Спецефичность катализа заключается в том, что в присутствии катализатора изменяется путь, по которому проходит суммарная реакция, образуются другие переходные состояния с иными энергиями активации, а поэтому изменяется и скорость хим. реакции.

переработка древесины требует больших затрат в производстве, поэтому используют катализаторы, которые ускоряют процесс химического превращения, увеличивают выход продукта и уменьшают выброс вредных веществ. приемущество изп. катализаторов в том что они не требуют больших затрат.

28. Растворы. Процессы при образовании растворов. Идеальные и реальные растворы. Гидраты и сольваты.

Растворы - гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов

Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией ).

Энергетической характеристикой растворения является теплота образования раствора , рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса. Наиболее значительными среди них являются: – поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах; – выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.

СОЛЬВАТЫ, продукты присоединения растворителя к растворенным веществам. Обычно сольваты образуются в растворе, но нередко (при охлаждении раствора, испарениирастворителя и др.) м. б. получены в виде кристаллич. фаз-кристаллосольватов.

Гидраты - продукты присоединения воды к неорганическим и органическим веществам


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав