22.09.2019

Диагностика воздушных линий. Контактной сети


О диагностике железобетонных опор


Недавно Управление электрификации и электроснабжения (ЦЭ) МПС РФ совместно с ВНИИЖ-Том разработало техническое указание К-3-94, дополняющее Указания го техническому обслуживанию и ремонту железобетонных опорных конструкций контактной сети К-146-88. Оно предназначено для дистанций электроснабжения, использующих различные методы и средства диагностики железобетонных опор контактной сети.

В новом документе уточнена цель диагностики Она проводится для определения фактической несущей способности конструкций, выявления опор с недостаточной прочностью и предупреждения их падения

Снижение несущей способности опор объясняется преимущественно двумя причинами: старением бетона в надземной части, электрокоррозией арматуры в подземной части конструкций. Старение развивается во всех опорах независимо от рода тягового тока в результате природно-климатических и эксплуатационных воздействий. Оно сопровождается снижением его прочностных характеристик.

Наиболее интенсивно этот процесс протекает в опорах с низким качеством изготовления стоек в суровых климатических условиях. Агрессивная среда ускоряет старение бетона. При хорошем качестве изготовления стоек опор и в умеренных климатических условиях процесс развивается достаточно медленно.

В подземной части опор при отсутствии агрессивности грунтов и незначительном влиянии климатических факторов старение бетона практически не отмечается. Напротив, его прочность со временем даже возрастает. В агрессивных грунтах потеря бетоном своих прочностных свойств определяется видом и содержанием агрессивных веществ.

Элекгрокоррозия арматуры в подземной части опор возникает при протекании токов утечки с рельсов по арматуре при низком омическом сопротивлении опор и неисправных защитных устройствах. Наибольшая опасность электрокоррозии арматуры наблюдается в анодных и знакопеременных зонах, когда плотность стекающего тока превышает 0,6 или сопротивление опоры менее 25 Ом на каждый вольт потенциала «рельс - земля».

На участках с опорами, объединенными групповыми заземлениями опасны во всех случаях опоры, омическое сопротивление которых менее 100 Ом. Это объясняется возможностью их разрушения перетекающими оками.

В зависимости от места обследования опор и причин, вызывающих снижение их несущей способности различают диагностику надземной части и подземной части опор. Проверка надземной части позволяет оценить несущую способность опор, которая изменяется вследствие старения бетона и уменьшения его прочностных характеристик. Диагностика подземной части проводится для оценки состояния и несущей способности опор при электрокоррозионном повреждении арматуры, а также в случаях разрушения бетона агрессивными грунтами.

Вид ко: троля зависит от рода тягового тока. Так, на участках переменного тока, где нет электрокоррозионной опасности для арматуры в основном следует диагностировать надземную часть опор. В подземной части диагностику проводят в случаях, когда обнаруживают признаки повреждения опор в надземной части.

Если таких признаков нет, то подземную часть проверяют выборочно на 1 - 2 опорах из каждых 100опор раз в 6 лет На участках постоянного тока в обязательном порядке проводят оба вида диагностики.

В свою очередь, диагностика надземной части опор может быть выборочной или сплошной. Выборочная позволяет установить несущую способность опор, у которых при визуальном осмотре выявлены какие либо повреждения: трещины, выбоины, выветривание поверхностного слоя, его шелушение и т.п., а также замечены прогибы в зоне консоли.

При проведении выборочной диагностики рекомендуется проверять также состояние анкерных опор и опор в кривых малого радиуса независимо от наличия на них повреждений. Первую выборочную проверку необходимо провести не позднее 3 лет после сдачи участка в эксплуатацию. В последующем контроль осуществляют не реже 1 раза в 3 года на участках постоянного тока и 1 раз в 6 лет на участках переменного тока.

Сплошная диагностика необходима для определения фактической несущей способности всех опор. При обычных условиях эксплуатации, когда нет чрезмерной агрессивности среды и признаков ускоренного старения опор, первая сплошная диагностика осуществляется через 20 лет после ввода участка.

При сохранении тех же условий эксплуатации вторая сплошная диагностика проводится через 10 лет после первой Последующие обследования назначают индивидуально для каждого участка в зависимости от состояния опор и с учетом данных предыдущих диагностирований.

На участках с тяжелыми условиями эксплуатации, чрезвычайно агрессивной средой (в зоне промышленных предприятий побережья морей и озер) сплошную диагностику опор необходимо проводить более часто, устанавливая эти сроки, исходя из условий обеспечения безопасности движения поездов.

Надземную часть опор обследуют с помощью ме года неразрушающего контроля. Для этого необходимо использовать измеритель толщины защитного слоя бетона ИЗС-10Н ультразвуковой прибор УК-14ПМ, определяющий прочность бетона. Перед применением приборы должны быть проверены в соответствии с инструкцией по эксплуатации и находиться в работоспособном состоянии.

Рассмотрим последовательность проверки. Вначале по книге опор (форма ЭУ-87) уточняют тип конструкции (СЖБК ЖБК, СК, металлические и др.), ее нормативную несущую способность (3,5; 4,5; 60; 8" 10 те м), назначение (консольная, переходная, анкерная, фиксаторная, жестких поперечин) и срока службы (год установки) Используют также исполнительную документацию, паспорта на конструкции, сохранившуюся на стойках маркировку, результаты внешнего осмотра.

Чтобы установить тип железобетонных стоек опор при отсутствии маркировки и исполнительной документации, рекомендуется пользоваться также прибором ИЗС-10Н. Для этого указатель диаметров на его передней панели устанавливают на цифру «41», а преобразователь перемещают по окружности стойки опоры.

Если показания прибора изменяются от 3 - 4 до 10 -15 мм то данная стойка ЖБК Если стрелка прибора постоянно показывает 15 - 18 мм, то данная стойка СЖБК. Уточненные данные заносят в книгу опор или в ПЭВМ в соответствии с программой «Опоры» НТЦх«Эридан 1».

С учетом данных предыдущих обследований, проведенных в соответствии с требованиями Указаний по техническому обслуживанию и ремонту железобетонных опорных конструкций контактной сети (К-146-88), выбирают опоры с повреждениями и дефектами, а также анкерные опоры и опоры в кривых малого радиуса.

На каждой из них с помощью ультразвукового прибора УК-14ПМ измеряют время распространения ультразвука в бетоне и определяют косвенные показатели, необходимые для оценки несущей способности опор. Изменения и оценка несущей способности опор осуществляется в соответствии с «Рекомендациями по оценке несущей способности центрифугированных железобетонных стоек опор контактной сети ультразвуковым методом».

При сплошной диагностике время распространения ультразвука и несущую способность определяют для всех опор, в первую очередь для наиболее старых конструкций. Результаты анализируют и разделяют опоры на группы в зависимости от их остаточной несущей способности.

К первой группе относят все опоры, у которых измеренные показатели несущей способности не ниже минимального значения, установленного нормативно-технической документации (не менее , где - нормативная мощность стойки, 1,6-минимальный коэффициент запаса). Такие опоры продолжают эксплуатировать без ограничений, следующий срок обследования назначают в соответствии с установленной периодичностью.

Ко второй группе относят все опоры у которых несущая способность оказалась ниже уровня, установленного нормативно-технической документацией (менее ), где но превышает величину нормативного изгибающего момента (более Для таких конструкций определяют их фактическую несущую способность по таблице, указанной в рекомендациях, и вычисляют фактический изгибающий момент от внешней нагрузки в уровне условного образа фундамента (на отметке 0,5 м ниже головки рельса).

Если фактическая несущая способность опор превышает значения (фактический изгибающий момент в уровне условного обреза фундамента от суммарной внешней нагрузки), то такие опоры продолжают эксплуатировать. Однако их обязательно обследуют каждые 3 года В случаях, когда фактическая несущая способность оказывается менее , но более опоры устанавливают на оттяжки и заменяют в течение 2 - 3 лет (в первую очередь - с наиболее низкой несущей способностью).

К третьей группе относят опоры, у которых по данным измерений косвенных показателей несущая способность оказывается ниже минимально допустимого значения, требуемого для восприятия внешних нагрузок Подобные конструкции считают исчерпавшими свой ресурс и меняют. До замены опоры ставят на оттяжки и при возможности частично разгружают.

Диагностика подземной части опор на участках постоянного тока проводится для определения состояния арматуры. Ока включает следующие этапы-оценку электрокоррозионкой опасности для арматуры опор; определение фактического состояния арматуры опор находящихся в опасных в злекрозионном ом отношении зонах.

При этом следует придерживаться следующего порядка. На всех перегонах и участках измеряют потенциалы «рельс - земля» и определяют примерные границы анодных, катодных и знакопеременных участков Потенциальные диаграммы строят в соответствии с Указаниями по техническому обслуживанию и ремонту железобетонных опорных конструкций контактной сети. Данные измерений оформляют в виде потенциальных диаграмм участков.

В пределах каждой потенциальной зоны иэмеряют сопротивление растеканию тока каждой опоры. В первую очередь, они необходимы в анодных и знакопеременных зонах. При индивидуальных заземлениях измерения проводятся методом амперметра - вольтметра приборами М231 или с помощью измерителя сопротивлений МС07 (08).

При групповых заземлениях измерения проводят в два этапа. На первом фиксируют входное сопротивление группы. Если оно более 100 Ом, то сопротивления каждой опоры не контролируют Если входное сопротивление менее 100 Ом, то ищут низкоомные опоры в группе.

На втором этапе осуществляется их поиск Для этого либо измеряют сопротивление каждой опоры, отсоединив ее от группового заземления, либо градиент потенциала вблизи опоры с использованием дополнительного источника тока, включаемого между тросом рельсом, и приборов АДО или «Диакор» Методика поиска низкоомных опор с применением названных приборов содержится в прилагаемой к ним инструкции.

По данным потенциальных условий и измерений сопротивлений опор или входных сопротивлений групповых: заземлений оценивают электрокоррозионную опасность для арматуры. Опоры, у которых плотность тока утечки превышает 0,6 , или ток утечки превышает 40 мА, или градиент потенциала вблизи их более 0,1, или их сопротивление менее I00 Ом считаются опасными в отношении электрокоррозии и их подземная часть должна быть обследована.

В особо сложных условиях эксплуатации используют метод построения электрокоррозионных диаграмм, чтобы оценить границы электрокоррозионной опасности и установить интенсивность элекгрокоррозионных диаграмм Он основан на применении интегрирующих датчиков.

Интегрирующий датчик электрокорроэии представляет собой бетонную призму сечением 20x20 мм и длиной 150 мм. Внутри ее имеется металлический электрод, выступающий на 20 мм над одной торцовой гранью и имеющий такой же защитный слой у другой. Электроды изготавливают из проволоки такого диаметра и класса, как и применяемая для опор. Перед установкой в датчики их тщательно взвешивают с точностью до 0,01 г маркируют.

Подготовленные электроды устанавливают в формы и заливают цементирующим раствором или бетоном, состав которого подобно используемому при изготовлении опор. При отсутствии данных о составе бетона опор используют растворную или бетонную смесь с расходом цемента не менее 450 . После бетонирования датчики выдерживают в формах не менее 7 дней и затем освобождают от опалубки.

Подготовленные датчики снабжают изолированным проводником длиной 2,5 - 3 м. Место его присоединения к электроду тщательно изолируют битумной мастикой или клейкой лентой. После оборудования датчик закапывают в грунт в створе на расстоянии 2 - 3 м и подсоединяют к защитному устройству со стороны рельса. Глубина заложения датчика принимается равной примерно 0,5 м.

При индивидуальных заземлениях опор устанавливают один датчик на километр пути, при групповых - один на группу опор. В последнем случае он располагается в месте расположения защитного блока. Присоединенные к рельсу интегрирующие датчики находятся под во действием токов утечки в течение 3-6 мес, затем их извлекают из грунта.

Датчики разбивают и электроды извлекаются. Их очищают от ржавчины, изоляции и снова взвешивают с точностью до 0,01 г. По результатам начального взвешивания и взвешивания после злекгрокоррозионного воздействия определяют потери металла и рассчитывают удельный вынос металла в . для каждого датчика.

Затем на графике по горизонтали наносят в масштабе места установки датчиков и в них откладывают вертикальные отрезки, изображающие удельный вынос металла Концы отрезков соединяют линиями. Полученный график представляет собой электрокоррозионную диаграмму. Она позволяет определит участки с наибольшей электрокоррозионной опасностью, принять меры защиты опор и ограничить диагностику опор только этими участками.

Фактическое состояние арматуры опор, предрасположенных к электрокорроэии, определяют с помощью приборов АДО или «Диакор» УК 14ПМ. Используя прибор АДО, оценивают значение суммарного переходного потенциала после положительной и отрицательной поляризации внешним источником тока, прибор «Диакор» - время достижения потенциалом поляризации контрольного значении.

Если суммарный переходный потенциал арматуры оказывается более 0,75 В или время достижения значения потенциала поляризации в 0,6 В составляет менее 5 мин то считают, что арматура о юры не корродирует и находится в исправном состоянии. Когда суммарный переходный потенциал или время достижения потенциалом контрольной величины оказывается меньше отмеченных величин, обязательно о обследуют подземную часть опор.

Для этого ее откалывают. Если обнаруживают трещины отслоения бетона, выходы ржавчины, то делают вывод о коррозионном разрушении арматуры Опора с такими повреждениями заменяется. При отсутствии видимых повреждений на поверхности опоры подземную часть обследуют прибором УК-14ПМ на наличие скрытых трещин.

Когда резких отклонений показаний прибора в различных местах измерений нет, говорят, что внутренние повреждения и коррозия арматуры отсутствуют. В аком случае проверяют защитные
устройства, и опора продолжает эксплуатироваться. Если имеются признаки скрытых трещин, то опору устанавливают на оттяжки и в последующем заменяют. Воэмож ы ситуации когда приборов АДО или «Диакор» нет. Тогда состояние подзем ой части опор может быть проверено при бором УК-14ПМ. В этом случае откапывают все опоры, оцененные как опасные в электрокорро-зионном отношении.

Обследова ие подземной части опор проводят каждый раз после их длительной (3 - 4 мес) эксплуатации с неисправными защитными устройствами. При исправных защитных устройствах проверка состояния опор с электрокоррозионной опасностью должна проводиться не реже 1 раза в 3 года.

Оценивая состояние одземной части опор, необходимо анализировать величин! сопротивления одних и тех же опор в разные годы. Его снижение с течением времени может свидетельствовать о выходе иэ строя изолирующих втулок. Особую настороженность вызывают случаи, когда сопротивление опор резко повышается с низкого др высокого значения.

Подобное возможно по нескольким причинам: в результате коррозии арматура разрушена полностью и исчезла электрическая цепь через нее; после случайного разрыва контакта между арматурой и закладным болтом и образования зазора между ними, вследствие образования на арматуре продуктов коррозии без разрушения защитного слоя бетона Такие опоры особенно тщательно обследуют и после этого принимают решение о их дальнейшей эксплуатации

Подземную часть опор при повреждении бетона агрессивной средой проверяют после их отко ки на 0,7 -1 м. Методика проверки ничем не отличается от диагностики опор в надземной части При выборочной диагностике подземной части опор на участках переменного тока для контроля выбирают конструкции, находящиеся в наиболее неблагоприятных условиях. Ик откапывают и выдерживают в таком состоянии 4-5 дней. Затем проводят необходимые измерения по той же методике, что и измерения в надземной части. Так же оценивают и несущую способность конструкций.

На участках постоянного тока проверка надземной и подземной частей опор может совмещаться или проводиться раздельно Конкретна пос^едова тельность работ определяется состоянием опор. У металлических опор надземную часть диагностируют в соответствии с Инструкцией по оценке несущей способности и содержанию металлических опорных конструкций контактной сети и прожекторных мачт, а фундаментную часть в соответствии с Указаниями по техническому обслуживанию и ремонту железобетонных опорных конструкций контактно сети (К-146-88).

По результатам диагностики оценивают состояние парка опор. Анализ включает общие данные числа опор на дистанции (дороге), в том числе железобетонных и металлических, подробную характеристику парка железобетонных опор по типам и срокам службы.

В.И. ПОДОЛЬСКИЙ,
заведующий лабораторией
опор контактной сети ВНИИЖТа
Б.Ф. КОЖАНОВ,
главный технолог ЦЭ МПС

ДИАГНОСТИКА ОПОР И ФУНДАМЕНТОВ ВЛ
СОВРЕМЕННЫЕ МЕТОДЫ ОЦЕНКИ

Электросетевое строительство в России активно велось с 60-х до середины 80-х годов прошлого столетия. В настоящее время нормативные сроки службы этих объектов заканчиваются. Отсутствие необходимых и достаточных инвестиций для реконструкции объектов электроэнергетики на протяжении последних 10-15 лет привело к накоплению больших объемов «отложенного спроса». В итоге существует крайне серьезная проблема: с одной стороны – огромное число объектов, требующих незамедлительной реконструкции исходя из нормативных сроков службы; а с другой стороны – отсутствие финансовых возможностей для ее выполнения.
Из вышесказанного следует однозначный вывод: необходимо отказаться от «тотальной реконструкции» в пользу «адресно-восстановительного ремонта» и «адресной замены» электросетевого оборудования и конструкций. Начальным этапом этой работы является диагностика конструкций ВЛ. Наряду с традиционными способами всё активнее начинают применяться современные методы диагностики, о которых рассказывают наши новосибирские авторы.

Юрий Гунгер , к.т.н., генеральный директор
Виктор Чернев , начальник отдела диагностики электрооборудования
Группа компаний «ЭЛСИ», г. Новосибирск

Целью диагностики является ранжирование оборудования и конструкций по их остаточным эксплуатационным характеристикам с разделением на 3 группы.
Первая из них представляет собой группу продления ресурса, которая включает объекты с нормальными остаточными эксплуатационными характеристиками, несмотря на окончание их нормативного срока службы.
Во вторую группу – «адресно-восстановительного ремонта» – входят объекты, остаточные эксплуатационные характеристики которых могут быть восстановлены в результате выполнения текущего или капитального ремонта.
Третья группа – «адресной замены» – состоит из объектов, остаточные эксплуатационные характеристики которых ниже нормируемых значений и не могут быть восстановлены в результате выполнения ремонта.
В последние годы широкое распространение получили различные методы диагностики электрических аппаратов, как наиболее дорогостоящих и ответственных элементов электрической сети. Также разработаны и внедряются в эксплуатационную практику методы диагностики электрической части воздушных линий (ВЛ) и подстанций (ПС) – проводов, контактных соединений и изоляции. На этом фоне единственным широко распространенным способом диагностики механической части ВЛ и ПС – опор, стоек под оборудование и фундаментов остаются внешние осмотры, регламентируемые правилами эксплуатации электроустановок. К сожалению, внешние осмотры не могут рассматриваться как сколько-нибудь серьезный способ диагностики, так как такие конструкции наряду с видимыми дефектами могут иметь и скрытые . При этом, учитывая массовость этих элементов в составе любой электрической сети, вероятность возникновения аварий из-за повреждения механической части отдельных конструкций достаточна высока.

Общие методы испытаний бетонных опор ВЛ

На наш взгляд, проблеме диагностики механической части ВЛ и ПС, находящихся в длительной эксплуатации, следует уделять более серьезное внимание. Опыт показывает, что диагностике должны подвергаться все железобетонные конструкции со сроком эксплуатации более 20 лет. Сейчас в России в эксплуатации находятся несколько десятков тысяч железобетонных стоек ПС и несколько сотен тысяч опор ВЛ с железобетонными фундаментами или центрифугированными стойками со сроком службы около 40 лет.
Следует отметить многопараметричность деструктивных процессов, снижающих несущую способность железобетонных фундаментов и стоек опор ВЛ в эксплуатации: это и воздействие грунтово-климатических факторов внешней среды, и влияние вибраций от действия ветровых нагрузок, и другие специфические, в том числе электрофизические, условия функционирования электросети. В настоящее время достаточно хорошо проработаны следующие методы испытания бетонов на прочность:
Метод стандартных образцов. Образцы кубической формы испытывают через 28 суток после изготовления, для чего они устанавливаются в пресс и нагружаются до разрушения образца.
Использование кернов, выбуренных из конструкции, которые испытываются подобно стандартным образцам под прессом.
Группа методов неразрушающего контроля (НК), основанных на измерении поверхностной твердости бетона.
Первый метод неприменим в эксплуатации. Использование второго метода проблематично, поскольку он ухудшает прочностные характеристики конструкций за счет выбуривания образцов из тела конструкции, а также из-за сложной технической осуществимости такой операции в полевых условиях.

Методы неразрушающего контроля

Более приемлемыми являются методы НК, такие как:
1. Метод пластической деформации , основанный на измерении размеров отпечатка, который остается на поверхности бетона после соударения с ней стального шарика (молоток Кашкарова).
2. Метод упругого отскока , заключающийся в измерении величины обратного отскока ударника от поверхности бетона (склерометр Шмидта).
3. Метод ударного импульса , регистрирующий энергию удара, возникающую в момент соударения бойка с поверхностью бетона.
4. Метод отрыва со скалыванием ребра конструкции , заключающийся в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона при вырывании из него анкерного устройства. 5. Метод отрыва стальных дисков.
6. Ультразвуковой метод , измеряющий скорость прохождения ультразвуковых (УЗ) волн.
Первые пять методов позволяют определить прочностные характеристики лишь поверхностного слоя бетона железобетонной конструкции, притом в одной точке, и это является их существенным недостатком.
Наиболее адекватным считается метод УЗ-контроля, поскольку в отличие от других методов он позволяет измерить интегральные параметры прочности. По технике проведения испытаний этот метод делится на сквозное УЗ-прозвучивание, когда датчики располагаются с разных сторон тестируемого образца, и поверхностное УЗ-прозвучивание, когда датчики расположены с одной стороны. Метод сквозного УЗ-прозвучивания позволяет, в отличие от всех остальных методов НК, контролировать прочность не только приповерхностных слоев бетона, но и всего объема бетона конструкции. Следует добавить, что современные приборы (УК1401, Пульсар, Бетон-32, УК-14П) позволяют измерять прочностные характеристики бетона с приемлемой точностью (8–10%) .
Основным преимуществом средств НК, основанных на использовании ультразвуковых методов оценки прочности бетона, является существование устойчивой зависимости параметров распространения ультразвуковых колебаний в бетоне от состояния его структуры, наличия и накопления в нём тех или иных дефектов и повреждений. Возникновение в структуре бетона любых дефектов, уменьшающих его прочность, соответствующим образом изменяет скорость и время распространения ультразвука в бетоне .
Анализ обширного статистического материала, накопленного в ходе лабораторных и полевых обследований, выявил закономерности между ультразвуковыми и прочностными характеристиками. Они используются для получения комплексных оценок технического состояния конструкций, а самое главное, для заключения об их работоспособности в интересующем интервале времени.
Сравнивая методы УЗ-контроля с такими традиционными методами контроля (ТМК) технического состояния железобетонных конструкций, как молоток Кашкарова или Физделя, микроскоп Бринеля или лупа Польди, отметим главный недостаток последних: ТМК не обеспечивают выявление дефектов в бетоне на ранней стадии их появления и не позволяют получить количественные оценки развития этих дефектов во времени из-за большой погрешности получаемого результата. Относительная простота и дешевизна этих приборов и приспособлений ТМК являются их привлекательным преимуществом и объясняют причину их использования.


Фото 1. Дефектный железобетонный фундамент ВЛ 500 кВ


Фото 2. Состояние ранее отремонтированного фундамента


Фото 3. Дефектная железобетонная стойка ВЛ 110 кВ

Сопоставление результатов измерения прочности бетона, полученных на реальных железобетонных конструкциях разной дефектности с помощью УЗ-тестеров и ТМК, показывает, что их сходство наблюдается только для конструкций, не имеющих существенных видимых разрушений. Например, при оценке прочности бетона конструкции, имеющей трещину, традиционный метод может дать приемлемую оценку прочности, тогда как при использовании УЗ-прибора измерение укажет на наличие дефекта.

Не только прочность

Прочностные характеристики бетона являются очень важными, но не единственными параметрами, характеризующими надежность и работоспособность железобетонной конструкции. Появление по тем или иным причинам трещин в бетоне может вызывать коррозию арматуры и ослабление несущей способности конструкции изнутри. Оценка коррозионного состояния арматуры проводится электрохимическими методами путем ее поляризации от внешнего источника тока . Сопротивления анодной и катодной поляризации арматуры в неповрежденном и поврежденном бетоне имеют существенные различия, которые и несут информацию о коррозионном состоянии арматуры.
А вот обобщенную оценку состояния всей железобетонной конструкции целиком (фундамента или стойки опоры) можно получить, используя только вибрационные методы диагностики, основаннные на анализе декрементов затухания механических колебаний низкой и высокой частоты, искусственно возбуждаемых в железобетонной конструкции. Между этими параметрами и состоянием бетона, арматуры и их сцеплением между собой существует определенная зависимость . С появлением трещин на бетоне или коррозии арматуры их взаимодействие нарушается, что приводит к снижению несущей способности конструкции.

Ультразвук плюс вибрация

Наиболее эффективным современным средством контроля технического и коррозионного состояния железобетонных конструкций ПС и ВЛ является комплекс испытаний, использующий ультразвуковые и вибрационные методы оценки механических свойств, а также электрохимические методы определения коррозионного состояния арматуры и металлоконструкций ВЛ.
Для железобетонных конструкций, не имеющих видимых дефектов, комплексные и традиционные обследования имеют примерно одинаковые результаты и временные затраты. В случае, когда имеется скрытый дефект, традиционный способ его определить не может, даже в случае откопки конструкции из земли.
Несмотря на то, что комплексная диагностика является более детальной, при работе с конструкцией, находящейся в нормальном состоянии, она имеет сравнительно небольшие временные затраты (~7 минут). При диагностировании дефектной или даже аварийной конструкции временные затраты увеличиваются в два раза за счет повышенного объема виброконтроля (~14 минут). Традиционный способ при обследовании конструкции в нормальном состоянии с помощью склерометра позволяет уложиться в одну минуту. Однако в случае обследования дефектного фундамента или стойки опоры требуется их откопка (на глубину от 0,5 до 1,5 метров), что увеличивает временные затраты в три-пять раз (по сравнению с комплексной диагностикой).

Обследование фундаментов и опор ВЛ

Группой компаний ЭЛСИ совместно с НПП «Электрокорр» выполнены комплексные обследования фундаментов ВЛ 500 кВ в «Иркутскэнерго» и железобетонных опор ВЛ 110 кВ в «Новосибирскэнерго». В «Иркутскэнерго» по результатам обследований распределение фундаментов по группам выглядит следующим образом:

  • в группе продления ресурса фундаментов – 38%;
  • группа «адресно-восстановительного ремонта» содержит 62%, из них дефектных фундаментов, требующих срочного ремонта в течение 2006 года, – 19%, фундаментов, ремонт которых может быть выполнен в последующие годы, – 43%;
  • аварийных фундаментов обнаружено не было, поэтому в группе «адресной замены» фундаментов – 0%.
В «Новосибирскэнерго» выборочному обследованию подверглись центрифугированные стойки опор ВЛ 110 кВ, визуально находящиеся в наихудшем состоянии. Однако по результатам обследований распределение стоек по группам выглядит так:
  • группа продления ресурса содержит 84% стоек;
  • группа «адресно-восстановительного ремонта» составляет 8%;
  • группа «адресной замены» – 8%.

Основные дефекты

Причинами дефектов железобетонных фундаментов металлических опор являются:

  • активное вымывание цементного камня под действием кислой ржавой воды, образующейся из дождевой воды в сочетании с продуктами коррозии стальных стоек опор;
  • осыпание и отслаивание бетона и наполнителя, приводящие к оголению арматуры, что в дальнейшем ведёт к коррозии арматуры и потере прочности фундамента;
  • незащищенность «оголовника» фундамента от действия процессов «замораживания–оттаивания» влаги.
На обследуемых ВЛ 500 кВ было установлено, что 68% всех фундаментов уже подвергались ремонту «омоноличиванием» верхней части фундамента бетоном на глубину от 200 до 600 мм от верха фундамента, при этом подавляющая часть фундаментов отремонтирована на глубину 200 мм. В результате исследования деградации бетона фундаментов была уточнена оптимальная глубина ремонта фундаментов, которая составила 500–700 мм от поверхности грунта. Таким образом, ремонт на глубину 200 мм не имеет смысла и является, по сути, непроизводительным расходованием выделенных ремонтных ресурсов, так как три четверти от числа фундаментов, ранее подвергавшихся ремонту, вновь отнесены к дефектным. Этот факт говорит о необходимости поиска новых ремонтных составов и технологий, обеспечивающих требуемую прочность, большую морозостойкость, меньшее водопоглощение и более надежную адгезию со старым бетоном.
На фото 1 показано техническое состояние дефектного железобетонного фундамента ВЛ 500 кВ, а на фото 2 – ранее ремонтированного дефектного фундамента.
Причинами дефектов центрифугированных железобетонных стоек являются:
  • неплотно прижатые края опалубки, допущенные при изготовлении центрифугированных стоек, следствием чего явилось быстрое разрушение швов полуформ в эксплуатации. Этот дефект зачастую приводит к образованию больших сквозных дыр, оголению арматуры и образованию значительных трещин вдоль швов полуформ (фото 3);
  • повреждения, сколы, полученные при транспортировке и установке опор;
  • влияние на стойки опор грунтово-климатических факторов (образование на стойке опоры мелких и крупных трещин). Эти дефекты за время эксплуатации также способствовали снижению несущей способности конструкций, что подтверждается данными вибродиагностики.
Выводы

1. Необходимо вместо «тотальной реконструкции» вменить в практику планирования ремонта электросетевого оборудования локальный «адресно-восстановительный ремонт» и «адресную замену» дефектных элементов и конструкций. Этот подход позволит в рамках ограниченных финансовых и технологических ресурсов обеспечить экономически целесообразный уровень надежности электроснабжения потребителей.
2. Экономический эффект от предлагаемого метода получается за счет исключения из объемов тех опор и фундаментов, ремонт которых может быть обоснованно перенесен на поздние сроки.
3. Главным условием эффективного решения задачи минимизации затрат на ремонты являются достоверные оценки эксплуатационного состояния всех элементов и узлов линий электропередачи, полученные с необходимой точностью в результате применения современного диагностического инструментария.
4. Традиционные методы оценки технического состояния железобетонных электросетевых конструкций, использующиеся в настоящее время, не обеспечивают выявление дефектов в бетоне на ранней стадии их возникновения и не позволяют получить количественные оценки развития этих дефектов во времени из-за большой погрешности получаемого результата.
5. Наиболее исчерпывающую информацию об остаточном эксплуатационном ресурсе железобетонных и металлических стоек опор и фундаментов воздушных линий электропередачи дают оценки, полученные с помощью ультразвуковой, вибрационной и электрохимической диагностики состояния.

Литература

1. Правила технической эксплуатации электрических станций и сетей Российской Федерации / Мин-во топлива и энергетики РФ, РАО «ЕЭС России», РД 34.20.501 – 95. – 15-е изд., перераб. и доп. – М.: СПО ОРГРЭС, 1996. – 160 с.
2. Штенгель В.Г. О методах и средствах неразрушающего контроля для обследования эксплуатируемых железобетонных конструкций // В мире НК. – 2002. – № 2(16). – С.12–15.
3. Ботин Г.П., Попонин С.А., Тарасов А.Г. Ультразвуковой контроль состояния железобетонных стоек опор и фундаментов воздушных линий электропередачи / Материалы Первой международной научно-практической конференции «Линии электропередачи – 2004: Опыт эксплуатации и научно-технический прогресс». – Новосибирск, 20–24 сентября 2004.
4. Гунгер Ю.Р., Тарасов А.Г., Чернев В.Т. Ультразвуковой и вибрационный контроль состояния железобетонных стоек опор и фундаментов воздушных линий электропередачи // Электроинфо. – 2005. – № 11. – С. 40–43.
5. Розенталь Н.К. Электрохимический метод исследования коррозии стали в бетоне по поляризационному сопротивлению // Электроснабжение железных дорог / ЗИ: ЦНИИ ТЭИ МПС. – 1993. – № 2. – С. 14–19.
6. Гуков А.И., Чадин А.Б. Аппаратура диагностики опор. Вибрационный и электрохимический методы // Электрическая и тепловозная тяга. – 1981. – № 4. – С. 38–40.

Диагностика воздушных линий

Воздушная линия электропередачи (ВЛ) - устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным к опорам или кронштейнам и стойкам на инженерных сооружениях при помощи изоляторов и арматуры. Ответвления к вводам в здания относятся к ВЛ .

Диагностика изоляторов. Важное место в обеспечении надежной эксплуатации устройств электроснабжения занимает современная и качественная диагностика изоляции сетей. На сегодняшний день не существует достаточно надежных методик дистанционного обнаружения дефектных изоляторов и технических средств, позволяющих эти методики реализовать. Фарфоровые тарельчатые изоляторы перед установкой испытываются напряжением 50 кВ промышленной частоты в течение 1 мин , далее мегаомметром на напряжение 2,5 кВ измеряется их сопротивление, которое должно быть не менее 300 МОм . Диагностирование изоляторов, находящихся в эксплуатации, производится приборами дистанционного контроля или измерительными штангами (рисунки 2.6 – 2.8). Рассмотрим, какие физические эффекты возникают в результате приложения к изолятору высокого напряжения. Из теории известно, что если к двум электродам, разделенным изолятором, приложить электрическое поле достаточной напряженности, то на поверхности или в теле изолятора образуется электропроводный слой, в котором возникает и развивается электрический разряд - стример. Возникновение и развитие разряда сопровождается генерацией колебаний в широком диапазоне частот (в инфракрасном, т.е. тепловом, звуковом, ультразвуковом диапазонах частот, в видимом спектре и в широком диапазоне радиочастот). Отсюда очевидно, что приемная часть устройства диагностики должна обнаруживать то или иное из перечисленных следствий образования и развития стримера. Полимерные изоляторы выходят из строя иными способами, чем фарфоровые или стеклянные изоляторы, и трудно определить состояние таких изоляторов в отсутствии каких-либо наблюдаемых физических дефектов типа трещин или почернения.



На ВЛ 110 кВ применяются только подвесные изоляторы; на ВЛ 35 кВ и ниже могут применяться как подвесные, так и штыревые изоляторы. При пробое изолятора в гирлянде, его диэлектрическая "юбка" разрушается и падает на землю в случае выполнения юбки из стекла, а при пробое фарфорового изолятора юбка остается целой. Поэтому неисправные стеклянные изоляторы видны невооруженным глазом, тогда как диагностика вышедших из строя фарфоровых изоляторов возможна только с помощью специальных приборов, например, прибора ультрафиолетовая диагностика "Филин".

Воздушные линии (ВЛ) электропередачи напряжением 35 кВ и выше являются основными в системах передачи электроэнергии. И поэтому дефекты и неисправности, происходящие на них, требуют немедленной локализации и устранения. Анализ аварий воздушных линий показывает, что ежегодно происходят многочисленные отказы ВЛ в результате изменения свойств материала проводов и их контактных соединений (КС): разрушение проводов из-за коррозии и вибрационных воздействий, истирание, износ, усталостные явления, окисление и др. Кроме того, с каждым годом растет число повреждений фарфоровых, стеклянных и полимерных изоляторов. Существует множество методов и систем для диагностики вышеперечисленных элементов, однако они, как правило, являются трудоемкими, обладают повышенной опасностью и, кроме того, требуют отключения оборудования от напряжения. Высокой производительностью характеризуется метод обследование ВЛ вертолетным патрулированием. За день работы (5 - 6 ч ) осматриваются до 200 км линий. При вертолетном патрулировании проводятся следующие виды работ:

Тепловизионная диагностика ВЛ, изоляторов, контактных соединений и арматуры с целью выявления элементов, подвергающихся температурному нагреву вследствие возникающих дефектов (рисунок 5.8);

Ультрафиолетовая диагностика ВЛ, изоляторов, контактных соединений с целью обнаружения коронных разрядов на них (рисунок 5.10);

Визуальный контроль опор, изоляторов, контактных соединений (рисунок 5.9, используется видеокамера с высоким разрешением).

Применение тепловизоров позволяет намного упростить процесс контроля состояния разрядников, установленных на воздушных линиях 35, 110 кВ . На основе термограммы можно определять не только фазу разрядника с повышенным током проводимости, но и конкретный дефектный элемент, повлиявший на рост этого тока. Своевременная замена и ремонт дефектных элементов позволяет продолжить дальнейшую эксплуатацию разрядников.

Использование авиационных инспекций по мере развития технологий обследования увеличивается и в зарубежных странах. Например, фирма TVA работает над применением при авиационных инспекциях инфракрасных камер с высокой разрешающей способностью на стабилизированной подвеске и камеры DayCor для обнаружения короны на элементах ВЛ в дневное время, радара для

выявления гниющих деревянных опор и т.д. Образование короны на элементах ВЛ свидетельствует о замыканиях, трещинах или загрязнении керамических изоляторов или обрывах прядей проводов. При короне возникает слабое ультрафиолетовое излучение, которое нельзя увидеть в дневное время. Камера DayCor благодаря фильтру, пропускающему только ультрафиолетовое излучение в диапазоне длин волн 240 - 280 нм , позволяет обнаружить корону в дневное время.

Для оперативной диагностики состояния опорно-стержневых изоляторов и керамики высоковольтных вводов используется малогабаритный переносный вибродиагностический прибор «Аякс-М». Для получения диагностической информации на башмак опорного изолятора оказывается ударное воздействие, после чего в нем возбуждаются резонансные колебания. Параметры этих колебаний связаны с техническим состоянием изолятора. Появление дефектов любого типа приводит к снижению частоты резонансных колебаний и увеличению скорости их затухания. Для устранения влияния резонансных колебаний конструкций, связанных с изолятором, регистрация вибраций производится после двух ударов – по верхнему и нижнему башмакам изолятора. На основании сравнения спектров резонансных колебаний при ударе по верхней и нижней частям изолятора производится оценка технического состояния и поиск дефектов.

При помощи прибора «Аякс-М» можно проводить диагностику состояния опорной изоляции и поиск дефектов следующих типов: наличие трещин в керамике изолятора или местах заделки керамики в опорные башмаки; наличие пористости в керамике изолятора; определение коэффициента технического состояния изолятора. По итогам диагностики определяются категории состояния изолятора – «требует замены», «требует дополнительного контроля» или «может эксплуатироваться». Зарегистрированные параметры состояния изолятора могут быть записаны в долговременную память прибора и, в дальнейшем, в память компьютера для хранения и обработки. При помощи дополнительной программы, можно проводить оценку изменения параметров изолятора от измерения до измерения. При помощи прибора может производиться диагностика состояния изоляторов практически любого типа и марки.

Для оценки состояния вентильных разрядников

измерение сопротивления;

измерение тока проводимости при выпрямленном напряжении;

измерение пробивного напряжения;

тепловизионный контроль.

Для оценки состояния ограничителей перенапряжений используются следующие испытания:

измерение сопротивления;

измерение тока проводимости;

тепловизионный контроль.

Диагностика проводов. Для определения возможных проблемных мест на линиях электропередачи, возникающих из-за вибрации, используется прибор для контроля и анализа вибрации проводов линий электропередачи. Прибор позволяет оценивать на месте в реальных погодных условиях характеристики вибрации линий электропередачи с различной конструкцией, натяжением проводов и техническим обеспечением, определять номинальный срок службы проводов, подвергающихся вибрации. Прибор представляет собой вибрационный инструмент, использующийся на месте для контроля и анализа вибрации проводов воздушных линий электропередачи под действием ветра. Он измеряет частоты и амплитуды всех циклов вибрации, сохраняет данные в матрице с высокой четкостью и обрабатывает результаты для обеспечения оценки средней продолжительности срока службы


исследуемых проводов. Методы измерения и оценки основываются на международном стандарте IEEE и процедуре CIGRE. Устройство может быть установлено непосредственно на провод около любого типа зажимов. Прибор состоит из калиброванного кронштейна лучевого сенсора, пристегивающегося к зажиму провода, который поддерживает короткий корпус цилиндрической формы. Чувствительный элемент в контакте с проводом передает движение на сенсор. Внутри корпуса располагаются микропроцессор, электронная цепь, источник питания, дисплей и температурный сенсор. Использование амплитуды изгиба (Yb ) в качестве параметра измерения для оценки жесткости вибрации провода является хорошо признанной практикой. Измерение дифференциального смещения на 89 мм от последней точки контакта между проводом и металлическим подвесным зажимом является исходным положением стандартизации IEEE измерений вибрации проводов. Сенсор - консольная балка, чувствует изгиб провода вблизи подвесных или аппаратных зажимов. Для каждого цикла вибрации датчики деформации генерируют выходной сигнал, пропорциональный амплитуде изгиба провода. Данные о частоте и амплитуде вибрации сохраняются в матрице амплитуда/частота в соответствии с количеством событий. В конце каждого периода контроля встроенный микропроцессор рассчитывает индекс номинального срока службы провода. Это значение сохраняется в памяти, после чего микропроцессор возвращается в режим ожидания следующего запуска. Доступ к микропроцессору может быть напрямую получен с любого терминала ввода-вывода или компьютера через линию связи RS-232.

Дефектоскопия проводов и грозозащитных тросов воздушных линий электропередачи. Надежность ВЛ зависит от прочности стальных канатов, используемых в качестве токоведущих, несущих элементов в комбинированных проводах, грозозащитных тросов, оттяжек. Контроль технического состояния ВЛ и ее элементов основывается на сравнении выявленных дефектов с требованиями норм и допусками, приведенными в проектных материалах обследуемой ВЛ, в государственных стандартах, ПУЭ, СНиП, ТУ и других нормативных документах. Состояние проводов и тросов обычно оценивается при визуальном осмотре. Однако такой метод не позволяет выявлять обрывы внутри проводов. Для достоверной оценки состояния проводов и тросов ВЛ необходимо применять неразрушающий инструментальный метод с помощью дефектоскопа, который позволяет определить как потерю их сечения, так и внутренние обрывы проволок .

Тепловой метод диагностики ВЛ. Обнаружить утечку тепла и предотвратить аварию, связанную с перегревом на воздушных линиях, можно на самых ранних этапах его появления. Для этой цели используются тепловизоры или пирометры .

Оценка теплового состояния токоведущих частей и изоляции ВЛ в зависимости от условий их работы и конструкции осуществляется:

По нормированным температурам нагрева (превышениям температуры);

Избыточной температуре;

Динамике изменения температуры во времени;

С изменением нагрузки;

Путем сравнения измеренных значений температуры в пределах фазы, между фазами, с заведомо исправными участками.

Предельные значения температуры нагрева и ее превышения приводятся в регламентирующих директивах РД 153-34.0-20363-99 "Основные положения методики инфракрасной диагностики электрооборудования и ВЛ", а также в "Инструкции по инфракрасной диагностике воздушных линий электропередач".

Для контактов и контактных соединений расчёты ведут при токах нагрузки (0,6 - 1,0) I ном после соответствующего пересчета. Пересчет превышения измеренного значения температуры к нормированному осуществляется исходя из соотношения:

, (2.5)

где ΔТ ном - превышение температуры при I ном;

ΔТ раб - превышение температуры при I раб;

Для контактов при токах нагрузки (0,3 - 0,6) I ном оценка их состояния проводится по избыточной температуре. В качестве норматива используется значение температуры, пересчитанное на 0,5 I ном. Для пересчета используется соотношение:

, (2.6)

где: ΔТ 0,5 - избыточная температура при токе нагрузки 0,5 I ном.

Тепловизионный контроль оборудования и токоведущих частей при токах нагрузки ниже 0,3 I ном не эффективен для выявления дефектов на ранней стадии их развития. Дефекты, выявленные при указанных нагрузках, следует относить к дефектам при аварийной степени неисправности. И незначительную часть дефектов следует относить к дефектам с развивающейся степенью неисправности. Следует отметить, что не существует оценки степени неисправности дефектов на косвенно перегреваемых поверхностях оборудования. Косвенные перегревы могут быть вызваны скрытыми дефектами, например трещинами, внутри изоляторов разъединителя, температура которых измеряется снаружи, при этом часто дефектные части внутри объекта бывают очень горячими и сильно обгоревшими. Оборудование с косвенными перегревами следует относить ко второй или третьей степени перегрева. Оценку состояния соединений, сварных и выполненных обжатием, следует производить по избыточной температуре.

Проверка всех видов проводов воздушных линий электропередачи тепловизионным методом проводится:

Вновь вводимых в эксплуатацию ВЛ - в первый год ввода их в эксплуатацию при токовой нагрузке не менее 80 %;

ВЛ, работающих с предельными токовыми нагрузками, или питающих ответственных потребителей, или работающих в условиях повышенных загрязнений атмосферы, больших ветровых и гололедных нагрузках - ежегодно;

ВЛ, находящихся в эксплуатации 25 лет и более, при отбраковке 5 % контактных соединений - не реже 1 раза в 3 года;

Остальных ВЛ - не реже 1 раза в 6 лет.

Ультразвуковая диагностика опор ВЛ. Оценка состояния железобетонных опор ультразвуковым прибором поверхностного прозвучивания. Постоянное наблюдение за состоянием опор ВЛ позволяет не только предотвратить аварии, но и существенно повысить рентабельность эксплуатации электрических сетей, выполняя ремонт лишь тех опор, которые действительно нуждаются в ремонте или замене. Значительная доля опор ВЛ в нашей стране и за рубежом выполнено из железобетона. Распространенным видом железобетонной опоры является стойка в виде толстостенной трубы, изготовленная методом центрифугирования. Под воздействием климатических факторов, вибрации и рабочей нагрузки бетон стойки меняет структуру, растрескивается, получает различные повреждения и в результате стойка постепенно теряет свою несущую способность. Поэтому для определения необходимости замены стойки требуются регулярные обследования всех стоек электрических сетей. Такие обследования предотвращают также излишнюю отбраковку опор .

Возможность объективной оценки несущей способности центрифугированных железобетонных стоек опор основана на том, что с изменением структуры бетона и появлением в нём дефектов происходит ухудшение прочности бетона, которое проявляется в уменьшении скорости распространения ультразвуковых колебаний. Причём, в силу конструктивных особенностей стоек и характера нагрузок на них, изменения свойств бетона в направлениях вдоль и поперёк стойки оказываются неодинаковыми: скорость ультразвука в поперечном направлении со временем снижается быстрее, что, по-видимому, можно объяснить повышением концентрации микротрещин с преимущественно продольной ориентацией. По изменению величин скоростей распространения ультразвука вдоль и поперёк стойки в процессе её эксплуатации, а также по их отношению можно судить о степени потери несущей способности стойки и принимать решение о её замене.

Добро пожаловать!
Шаровые опоры - это очень серьёзный элемент передней подвески, автомобилей ВАЗ классика это касается особенно. Там шаровых опор присутствует вдвое больше, чем в переднеприводных автомобилях (4 штуки), за счёт чего автомобиль становится более опасным. Ведь если не уследить и ездить на автомобиле, на котором шаровые опоры вышли из строя, то колесо может просто завалиться на бок. Если Вы будете ехать в это время, то машина сразу же потеряет управление и остановить её будет очень и очень трудно. Яркий пример мы Вам хотим продемонстрировать на видеоролике ниже, где шаровая опора выходит из строя, а правое колесо у автомобиля просто заваливается на бок.

Примечание!
Чтобы осуществить диагностику шаровых опор, Вам потребуются монтировка либо монтажная лопатка, либо лом; кроме того, очень тоненькая палочка нужна будет либо металлическая, либо просто веточка, но, что очень важно, палочка должна быть ровная, без изгибов и тому подобного. (Лучше всего использовать металлическую палочку длиной 5,6 см). И кроме этого всего, будет нужна ещё линейка и небольшой ножичек. Или вместо палочки, линейки и ножа возьмите хороший штангенциркуль, который эти все инструменты заменит!

Всё зависит от местности, где автомобиль эксплуатируется. Если же он эксплуатируется у Вас в очень крупных городах (такие, как Москва), в самом центре города, в основном на идеальных дорогах, либо же в Санкт-Петербурге, где дороги явно не уступают, то с диагностикой подвески можете даже не заморачиваться. Просто раз в год или каждые 100 000 км поглядывайте туда, всё проверяйте и ездите дальше. Но, в основном, автомобили марки «жигули» эксплуатируются в небольших городах, сёлах и тому подобных местах, где дороги, как говорится, оставляют желать лучшего. В таком случае диагностику всей подвески в целом, а также диагностику шаровых опор нужно производить как можно чаще, примерно раз в 20 000 км. Или же после хорошего наезда в глубокую яму на скорости. Таким образом Вы всегда будете уверены в своём автомобиле и не побоитесь эксплуатировать его, так как после тщательной проверки будете с высокой точностью знать о том, что подвеска полностью исправна.

Примечание!
Мало кто придерживается этого, ведь каждые 20 000 км заглядывать в подвеску авто довольно накладно людям, которые чуть ли не каждый день ездят, а эти 20 000 км накатают за очень короткий период. В таком случае диагностику шаровых опор можно производить сразу же после появления глухого стука в передней части авто или при наезде на яму. Обычно такой звук и появляется, когда одна из опор выходит из строя, но пока этот звук не услышишь, не поймёшь, правильно ли работают шаровые опоры или же нет. Возможно, эти стуки даже могут померещиться. Поэтому, чтобы такого не произошло и просто так Вы не лезли в подвеску автомобиля, взгляните внимательно на ролик ниже, в котором демонстрируется автомобиль с неисправной и шумящей шаровой опорой.

Как продиагностировать шаровые опоры на ВАЗ 2101-ВАЗ 2107?

Примечание!
Диагностируются шаровые опоры несколькими способами, самым правильным из которых является последний (третий) способ. Если действовать согласно ему, то Вы сразу же поймёте, нуждается ли опора в замене или пока ещё нет. Но есть большой минус в этом способе, ведь чтобы осуществить его, нужно будет снять шаровые опоры с автомобиля, а для этого нужно время. Поэтому таким способом мало кто шаровые опоры проверяет на исправность. С другой стороны, если правильно выполнять другие два способа проверки, то они тоже дадут свой результат. И если шаровые опоры будут очень сильно повреждены, то, проверив их такими способами, можно будет тоже понять, что они неисправны и подлежат замене.

Способ первый (вывешивание автомобиля и нагружение передней подвески):

  1. Сперва сорвите все гайки крепления колеса к автомобилю, после чего приподнимите автомобиль с помощью домкрата. Как только он будет висеть в воздухе, полностью раскрутите гайки и снимите нужное колесо с автомобиля (читайте статью « »). После проделанной операции подложите под рычаг нижней подвески дощечки (указаны красной стрелкой) и опустите автомобиль на них. После этого у Вас должно будет получиться так, что автомобиль лёг полностью на подвеску, а если быть точнее, то на пружину. Та часть, на которую одевается колесо (указана синей стрелкой), должна будет повиснуть в воздухе. На этом всё, приступайте к проверке.
  1. Для осуществления проверки шаровых опор на автомобиле, посредством вывешивания автомобиля, проделайте следующее. Для начала возьмите в руки монтировку (как вариант, лом или монтажную лопатку), после чего вставьте её так, как показано на фотографиях ниже. На большом фото показывается то, как нужно фиксировать монтажную лопатку при проверке верхней шаровой опоры, на маленьком фото – то, как нужно фиксировать её при проверке нижней шаровой опоры. На маленьком фото мало что видно и трудно понять, куда монтажную лопатку нужно вставлять. Но когда будете вживую работать с автомобилем, то сразу всё поймёте и, использовав лопатку как рычаг, поперемещайте её то вниз, то вверх, то вниз, то вверх и т.д. Во время осуществления этой процедуры не повредите пыльник, будьте аккуратны. В том случае, если опора сильно повредится, то подвеска будет сильно гулять и от небольшого усилия уже перемещаться. В таком случае шаровые опоры подлежат замене.

Примечание!
Данным способом лучше всего проверять только верхние шаровые опоры, потому что нижние опоры проверяются чуть-чуть по-другому. Более подробно о том, как это сделать, читайте в способе 2 ниже!

Способ второй (проверка нижних шаровых опор с помощью штангенциркуля):

Начнём сперва с того, что не у всех автолюбителей присутствуют штангенциркули. Если и Вы в оказались в этом числе, тогда возьмите нож, тоненькую проволочку и линейки и также приступайте к проверке. Вначале нужно будет воспользоваться гаечным ключом размером «на 7 мм» (или накидным) и выкрутить полностью с их помощью нижнюю пробку шаровой опоры (указана красной стрелкой). Затем в отверстие засуньте штангенциркуль (на некоторых штангенциркулях специальная тонкая часть есть) и замеряйте расстояние, на которое он войдёт. Если же не получается штангенциркуль засунуть (он упирается в землю например, а домкрата нет) или если его нет, то берите тоненькую проволочку, засовывайте её в отверстие до упора, делайте ножом надрез вровень с торцом шаровой опоры и вынимайте её. Потом измерьте расстояние от конца проволоки и до этого надреза при помощи линейки. Если это расстояние больше, чем 11,8 мм, то шаровая опора подлежит замене.

Способ третий (снятие шаровых опор и визуальных их осмотр):

Это самый долгий способ, но зато Вы будете точно знать, исправны ли шаровые опоры или уже есть в них люфт и они уже все разбиты. Для того, чтобы этот способ осуществить, снимите нужные для Вас шаровые опоры с автомобиля (Как это сделать, читайте в статье « »), после чего осмотрите внимательно пыльник шаровых опор. На нём не должны будут присутствовать трещины, разрывы и тому подобные дефекты. Затем снимите полностью пыльник; убедитесь, что смазка в шаровой опоре есть и что вода, грязь и тому подобное в шаровой опоре отсутствует. Следом возьмитесь рукой за кончик шарового пальца (см. фото ниже) и покачайте его из стороны в сторону. Палец должен будет перемещаться от усилия руки, но тяжело. Если палец болтается и легко перемещается, или же если Вы его даже с места сдвинуть не можете, то такая шаровая опора считается неисправной и подлежит замене.

3.1. Диагностика дефектов уровня «подшипник»

К уровню «подшипник» относятся все дефекты опорных подшипников агрегатов, и самих опорных стоек. Поскольку наибольшее распространение в практике нашли подшипники качения и скольжения, в данном разделе рассматриваются особенности диагностики дефектов именно этих типов подшипников.

Подшипники качения различных типов и марок, шариковые и роликовые, радиальные и радиально - упорные, однорядные и двухрядные и т. д. широко применяются во вращающемся оборудовании различного назначения. Без преувеличения можно сказать, что большая часть ремонтов оборудования, особенно малой и средней мощности, производится по причине дефектов опорных подшипников качения. Поэтому вопросы оперативной оценки технического состояния таких подшипников, диагностики возникающих в них дефектов, а также прогнозирования возможности их дальнейшей эксплуатации, занимают одно из самых важных мест в работе служб вибрационной диагностики.

В данной главе сделан достаточно краткий обзор основных диагностических методов, применяемых для оценки качества подшипников, определения дефектов на различных стадиях развития, расчета остаточного ресурса подшипников качения. Причина краткости описания проста - каждый из перечисленных ниже методов требует для своего полного описания отдельной книги.

3.1.1.1. Основные признаки и особенности развития дефектов

Наличие дефекта в подшипнике качения легко выявляется несколькими способами. Дефект может быть диагностирован «на слух», по форме вибрационного сигнала, по спектру, по СКЗ сигнала, по спектру огибающей вибрационного сигнала, с использованием «пик-фактора», «эксцесса», и другими методами.

Во вступительном разделе мы рассмотрим различные особенности и признаки возникновения, развития и диагностики дефектов подшипников качения, акцентируя внимание на тех особенностях, которые нам понадобятся далее, для описания того или иного метода диагностики подшипников. Это позволит уменьшить дублирование описательной информации, которую необходимо приводить при описании каждого метода диагностики дефектов.

Характерная форма вибрационного сигнала, в данном случае, зарегистрированного на опоре с подшипником качения, имеющем достаточно развитый дефект состояния, для примера, приведена на рисунке 3.1.1.1. На этом рисунке хорошо видны две наиболее характерные, и важные для диагностики, составляющие сигнала вибрации – фоновая, и импульсная.

Фоновое, или среднее значение уровня вибросигнала, регистрируемого на подшипнике качения, характеризуется каким - то усредненным значением, например среднеквадратичным значением виброскорости. Это значение вибрации достаточно просто может быть замерено при помощи обычных виброметров.

В моменты прохождения через «несущую», нагруженную зону подшипника качения, дефектного элемента, или элементов, на вибросигнале появляется четко выраженный амплитудный пик, некий энергетический импульс. Параметры этого импульса определяются видом, локализацией и степенью развития дефекта подшипника. Каждый такой ударный импульс обладает четырьмя основными диагностическими параметрами. Это максимальная амплитуда импульса, частота свободных (заполняющих) колебаний, скорость затухания амплитуды этих колебаний, и частота повторения импульсов.

Наиболее важным параметром, характеризующим степень развития дефекта подшипника, является амплитуда ударного импульса. Для измерения этого параметра импульса в приборах вибрационного контроля должны быть предусмотрено использование высокочастотных датчиков измерения вибрации и применения специальных пиковых детекторов или достаточно высокочастотных АЦП. Это обусловлено тем, что ударные импульсы имеют сравнительно высокую частоту. Локализация дефекта, место его расположения, обычно уточняется по частоте следования импульсов, для чего используются спектральные методы.

Если диагностику состояния опорных подшипников качения проводить по параметрам временных вибрационных сигналов, то основное внимание следует уделить двум. Это, во-первых, количественное значение общего уровня фона вибрации и, измеренное лучше в размерности СКЗ, во-вторых, это соотношение между уровнями фона вибрации и амплитудами пиковых значений в вибрационном сигнале.

В самом общем случае изменение технического состояния подшипника качения, возникновение и развитие в нем дефектов, за весь период его службы можно, разделить на пять основных этапов. Эти этапы схематически показаны на рис. 3.1.1.2. На этом рисунке по вертикали отложен уровень вибрации в размерности виброскорости (мм/сек), а по горизонтальной оси отложено относительное время эксплуатации подшипника.

Обобщенное техническое состояние подшипника, на каждом этапе его эксплуатации, определяется зоной между двумя линиями вибрационных уровней. Нижняя линия соответствует значению фонового уровня вибрации, определенному в размерности СКЗ виброскорости, а верхняя линия соответствует усредненной амплитуде ударных импульсов, возникающих при работе подшипника качения.

Как мы уже отмечали, этапов, характеризующих изменение технического состояния подшипников качения, можно выделить пять. На первом этапе, на рисунке это зона до границы с отметкой «1», общее техническое состояние подшипника будем считать идеальным. Эту зону можно считать не зоной наличия дефектов, а зоной их первичного возникновения. Дефекты еще не оказывают влияния на вибрации подшипников, все имеющее место увеличение вибрации обусловлено естественным износом поверхностей качения подшипников. На этом этапе пики вибрации превышают уровень фона незначительно, а сам «фоновый уровень» вибрации, в данном случае это СКЗ виброскорости, значительно меньше нормируемых значений тревожного и аварийного уровней, принятых для данного класса оборудования.

Зона «1-2» на рисунке 3.1.1.2. В этой зоне, начиная с границы «1», в подшипнике появляется и начинает развиваться какой-либо дефект, который сопровождается ударными вибрационными импульсами, амплитуда который быстро растет по величине. «Разрушающая энергия» импульсов затрачивается на «углубление» дефекта в рабочих поверхностях подшипника, в результате чего происходит еще большее увеличение энергии импульсов. Уровень фона вибрации по своей величине при пока этом почти остается неизменным, т. к. дефект носит локальный характер и на общем состоянии подшипника пока не сказывается. Повторим, что это зона возникновения дефекта в процессе эксплуатации.

Зона «2-3». Начиная с границы «2» ударные импульсы в подшипнике достигают по своей энергии, применительно к графику это увеличение по амплитуде, практически максимального значения. Дальше амплитуда импульсов уже растет немного. Количественное значение максимума энергии импульсов определяется типом подшипника и условиями его эксплуатации. Выделяющаяся в подшипнике энергия импульсов уже столь велика, что ее достаточно не только «для углубления», но и для расширения зоны дефекта. На данной стадии процесс саморазвития дефекта начинает идти более быстро. Одновременно с этим и уровень фона тоже растет достаточно монотонно. Можно сказать, что дефект набирает силу, готовиться к решающему нападению.

Зона «3-4». Это зона перехода дефекта подшипника от стадии «сильный дефект» к полной деградации. Процесс начинается с границы «3». Геометрическая зона развития дефекта здесь уже столь велика, что подшипник начинает «терять» свое основное назначение - обеспечивать вращение поддерживаемого вала с минимальным трением. Возрастают потери в подшипнике на вращение ротора и, как результат, увеличивается энергия, выделяющаяся в подшипнике, растет уровень фона. Это уже этап саморазрушения подшипника.

Зона «4-5». Это последний этап развития дефекта, когда он охватил уже весь подшипник, вернее говоря все то, что осталось от подшипника. Уровень фона вибрации практически сравнялся с уровнем пиков, точнее говоря, весь вибрационный сигнал состоит из пиков. Работы подшипников качения в этой зоне следует избегать, хотя, если говорить точнее, она уже просто невозможна.

Все эти вышеперечисленные этапы ухудшения состояния подшипника свойственны практически всем видам дефектов, имеющих место в любых разновидностях подшипников. В зависимости от ряда конструктивных и эксплуатационных параметров подшипников могут наблюдаться различия в длительности описанных этапов, в интенсивности вибрационных процессов в них, но общая картина развития дефектов не меняется.

Есть и другие характерные признаки наличия дефектов в подшипниках качения.

При работе подшипника с дефектами на поверхностях качения в спектре вибрационного сигнала появляются характерные составляющие, гармоники, с собственными частотами, по которым можно достаточно корректно выявить место нахождения дефекта. Численные значения частот этих гармоник зависят от соотношения геометрических размеров элементов подшипника, и конечно однозначно связаны с оборотной частоты вращения ротора контролируемого механизма.

В нагруженном подшипнике качения можно дифференцировать четыре основные, характерные, применяемые для диагностики частоты - гармоник. Это гармоники (от оборотной частоты) вызываются специфическими процессами на внешней обойме подшипника, на внутренней обойме подшипника, связаны с работой сепаратора подшипника, и с частотой вращения тел качения – шаров или роликов. Рассмотрим, для упрощения без промежуточных математических выкладок, формулы для расчета этих частот.

Частота обкатывания тел качения по внешней обойме подшипника, часто в литературе обозначаемая как BPFO:

Fн = Nтк / 2 х F 1 (1 - Dтк / Dc х cos j)

где: Nтк - количество тел качения в одном ряду подшипника;

F 1 - оборотная частота вращения ротора;

Dтк - диаметр тела качения;

Dc - средний диаметр сепаратора;

j - угол контакта тела качения с обоймой.

Fв = Nтк / 2 х F 1 (1 + Dтк / Dc х cos j)

Fс = 1 / 2 х F 1 (1 - Dтк / Dc х cos j)

Частота работы (вращения) тел качения - BSF:

Fтк = 1 / 2 х F 1 х Dтк / Dc (1 - Dтк 2 / Dc 2 х cos 2 j)

Как видно из этих формул, для точного определения характерных гармоник работы подшипника качения достаточно 4 первичных параметров, три из которых являются конструктивными, а четвертый определяется рабочей частотой вращения ротора.

Данные формулы расчета характерных подшипниковых частот являются достаточно простыми, но не всегда удобными для практики. Сложность заключается в том, что они включают в себя угол контакта тел качения с обоймами. Этот параметр не всегда известен точно и в процессе работы подшипника, по мере износа рабочих поверхностей подшипника, может изменять свое значение.

В практике удобнее использовать более простые формулы, не включающие в себя этот угол, в результате, естественно, менее точные, чаще всего приемлемые для практической диагностики. Приведем и эти формулы:

Частота обкатывания тел качения по внешней (наружной) обойме - BPFO:

Fн = F 1 (Nтк / 2 - 1,2)

Частота обкатывания тел качения по внутренней обойме - BPFI:

Fв = F 1 (Nтк /2 + 1,2)

Частота работы сепаратора - FTF:

Fс = (1 / 2 - 1,2 / Nтк)

Частота вращения тел качения - BSF:

Fтк = (Nтк / 2 - 1,2 / Nтк)

Алгоритм использования этих формул достаточно прост – если в спектре вибрационного сигнала появляются гармоники с такими частотами, то можно говорить о дефектах в соответствующем элементе подшипника. Так это можно трактовать теоретически, практически же все выглядит сложнее.

Использовать эти формулы, опираясь на анализ «прямых спектров» (классических спектров Фурье от всего сигнала) следует очень осторожно, достоверность диагностики с их использованием может быть не высокой. Достаточно часто даже при наличии в подшипнике явного дефекта в вибросигнале характерные частоты могут полностью отсутствовать, иметь сдвиг по частоте, или иметь очень малый уровень.

3.1.1.2. Методы диагностики дефектов подшипников

Для оценки технического состояния и диагностики дефектов подшипников качения разными авторами и компаниями разработано достаточно много различных методов. Естественно, что все эти методы, различные по своим теоретическим предпосылкам, имеют разную трудоемкость, требуют различного приборного обеспечения и могут применяться для различных целей. Конечно, итоговая информация, полученная в результате использования этих методов, имеет различную информативность и достоверность.

В данном разделе мы попытаемся, очень обзорно и поверхностно, рассмотреть и сравнить основные методы, чаще всего применяемые в практике. В основе сравнения будем использовать параметр, который назовем как практическая применимость и эффективность. При этом будем систематизировать эти методы исходя только из основных, базовых, теоретических предпосылок, возможности применения их на различных этапах развития дефектов подшипников.

В самом общем случае оценка технического состояния и поиск дефектов подшипников качения может производиться при четырех наиболее распространенных методов, по следующим диагностическим параметрам:

1. По величине СКЗ виброскорости

Данный метод позволяет выявлять дефекты подшипников на последних стадиях, начиная, примерно, с середины третьего этапа развития дефекта, когда общий уровень вибрации значительно вырастает. Данный метод диагностики прост, имеет нормативную базу, требует минимальных технических затрат и не требует специального обучения персонала, применяется при диагностике «массового» и сравнительно недорогого вращающегося оборудования.

2. Диагностика дефектов подшипников качения по спектрам вибрационных сигналов

Данный метод применяется на практике достаточно часто, хотя и не обладает высокой чувствительностью, но он позволяет выявлять, наряду с диагностикой подшипников, большое количество других дефектов вращающегося оборудования. Этот метод позволяет начинать диагностику дефектов подшипников примерно с середины второго этапа, когда энергия резонансных колебаний вырастет настолько, что будет заметна в общей картине частотного распределения всей мощности вибросигнала. Для реализации данного метода необходим хороший измерительный прибор достаточно высокого уровня, и специально подготовленный персонал.

3. Диагностика дефектов по соотношению пик / фон вибросигнала

Основы метода иллюстрируются рисунком 3.1.1.1. Этот метод разрабатывался несколькими компаниями и имеет много различных, примерно одинаковых по эффективности, практических модификаций. Это метод HFD (High Frequency Detection - метод обнаружения высокочастотного сигнала), метод SPM (Shock Pulse Measurement - метод измерения ударных импульсов), метод SE (Spike Energy - метод измерения энергии импульса), а также еще несколько других, но менее известных методов. Лучшие разновидности данного метода позволяет выявлять дефекты подшипников качения на достаточно ранних стадиях, начиная примерно с конца первого этапа развития. Приборы, реализующие данный метод диагностики дефектов достаточно просты и дешевы.

4. Диагностика дефектов подшипников качения по спектру огибающей вибрационного сигнала

Данный метод позволяет выявлять дефекты подшипников на самых ранних стадиях, начиная примерно с середины первого этапа. Теоретически данный метод диагностики дефектов подшипников качения может базироваться и на анализе акустических сигналов, и на анализе вибрационных сигналов. В первом случае метод называется SEE (Spectral Energy Emitted - анализ излучаемой спектральной энергии), и для своей работы использует специальный датчик акустического излучения. Чаще всего для такой диагностики используют акустические детекторы утечек различных модификаций, работающие в диапазоне частот до 100 кГц. В этом случае измерение акустических параметров производится дистанционно, с некоторого удаления от контролируемого подшипника. Если для измерения вибрационных сигналов используются «обычные контактные датчики вибрации», то применение этого метода не требует использования специального оборудования. Развитием данного метода много занимались российские диагносты, в настоящее время считается уже классическим методом для анализа вибросигналов с подшипников качения.

Все вышеперечисленные методы диагностики дефектов подшипников качения различаются не только теоретическими предпосылками, положенными в их основу. Они различаются типом используемого диагностического оборудования, его стоимостью, необходимой подготовкой персонала и конечно своей эффективностью. Практически всегда справедливо простое правило - чем на более ранней стадии, и чем более достоверно необходимо обнаруживать дефекты подшипников, тем дороже это стоит.

Кроме того всегда следует помнить и учитывать, что диагностика состояния подшипников является только частью общего диагноза по оборудованию. Полный анализ состояния оборудования обычно проводится по спектрам вибросигналов, поэтому при выборе метода диагностики подшипников качения предпочтение следует отдавать диагностике по спектрам огибающей, что делает этот метод практически универсальным. При таком подходе полный набор технических средств, предназначенный для диагностики состояния оборудования, будет минимальным по объему и стоимости.

В случае, если стандартная спектральная диагностика данного типа оборудования постоянно не проводится, то для ранней диагностики состояния подшипников качения весьма эффективно применение методов, основанных на сравнении уровней фона и пика вибросигнала. Эти методы обладают достаточной для стандартной практики работы специалистов по вибрационной диагностике достоверностью. Очень большим достоинством этих методов является то, что для своей реализации они не требуют дорогих и специализированных виброметров.

Для того, чтобы при наличии явного дефекта в подшипнике необходимо выполнение целого ряда различных требований. Эти требования обусловлены конструктивными, эксплуатационными, и методическими особенностями проведения диагностики подшипников качения различными методами.

Основное требование к конструкции подшипникового узла следующее - должен существовать хороший акустический контакт между зоной установки подшипника качения, и возможным местом установки измерительного датчика. Здесь использован термин «акустический контакт» по той причине, что большая часть интересующих нас вибрационных частот находится в зоне акустической слышимости. Конечно, более правильно было бы говорить о передаче вибрационных сигналов от контролируемого подшипника к датчику, но в данном случае это равноценно.

Измерение параметров технического состояния контролируемого подшипника должны проводиться в определенных условиях:

  • Контролируемый подшипник должен быть нагружен достаточным усилием, чтобы «дефект мог проявиться» в измеряемых вибрационных сигналах. При невыполнении этого условия диагностика в режиме «on-line» становится бессмысленной.
  • Дефектная зона подшипника качения должна периодически проходить через зону нагрузки подшипника.
  • Желательно, чтобы в контролируемом оборудовании не было других источников вибрационных сигналов с частотой, равной частоте дефектов, или их влияние было ослаблено в зоне контроля.

Используемое для диагностики измерительное оборудование должно обладать определенными свойствами:

  • Частотные параметры измерительного датчика должны охватывать весь возможный диапазон частот, которые могут возникнуть в контролируемом подшипнике, и который представляет «диагностический интерес».
  • Регистратор и анализатор вибрационных сигналов, используемый для анализа «прямых спектров» подшипников качения, должен обеспечивать, после обработки, получение спектра вибросигнала с разрешением не меньше 1600 - 3200 линий.

Эти требования относятся ко всем методам диагностики подшипников качения по спектрам и спектрам огибающей, которые базируются на использовании вышеприведенных формул расчета подшипниковых частот.

В завершение данного общего раздела, касающегося общих вопросов диагностики, хочется коснуться важного методического вопроса, связанного с диагностикой «тихоходных подшипников». Такие подшипники в больших количествах используются в бумагоделательных машинах, в различных конвейерных линиях и подъемных механизмах.

Смысл рассматриваемого вопроса достаточно прост, он заключается в том, чтобы определить, какими частотными параметрами должны обладать измерительные приборы, предназначенные для диагностики таких подшипников качения, и каковы особенности такой диагностики. Например, если нужно диагностировать подшипник, частота вращения которого равна 0,2 Гц, т. е. если контролируемый подшипник делает один оборот за пять секунд, то какими должны быть частотные свойства используемого диагностического прибора, измерительного датчика? В каком частотном диапазоне должны производиться измерения, чтобы полученной информации хватило для проведения корректной диагностики подшипника.

Для ответа на этот вопрос обратимся к рисунку 3.1.1.3., на котором показан временной сигнал, зарегистрированный на дефектном подшипнике, имеющем раковину на внутренней обойме.

Приведенная на рисунке вибрационная картина понятна и наглядна. Один раз в пять секунд дефектная зона внутренней обоймы попадает в нагруженную зону подшипника, и при прохождении через дефектную зону тел качения возникают динамические удары. После каждого удара в дефектной зоне возникают свободные затухающие колебания с частотой около 2 кГц. В приведенном примере мы имеем «серии» из трех ударов, т. е. за время прохождения дефектной зоны в нее «попадают» три тела качения подшипника. Это «рафинированная» вибрационная картина реального дефекта, достаточно часто встречающегося в практике.

Вопрос стоит следующим образом, какими частотными свойствами должен обладать измерительный датчик, и в каком диапазоне частот мы должны провести измерения, чтобы, например, диагностировать дефект в данном подшипнике при помощи прямых спектров.

Для начала определимся с тем, какая зона нашего вибрационного сигнала представляет для нас интерес, от этого зависит многое. Очевидно, что если речь идет о повторяющихся импульсах, то мы должны включить в рассмотрение не менее 2-3 оборотов контролируемого ротора, а в идеале 4-5, чтобы было можно уверенно диагностировать дефекты сепаратора подшипника качения. Это связано с тем, что частота гармоники дефектного сепаратора обычно чуть меньше 0,5 Гц, т. е. такой дефект «обкатывается» один раз за два оборота ротора. Если мы включим в рассмотрение 4 оборота ротора, то получим, что мы должны зарегистрировать вибрационный сигнал, длительность которого равняется 20 секунд.

Выше мы уже говорили, что частота свободных колебаний после динамических ударов, в нашем примере, равняется 2 кГц. Чтобы корректно зарегистрировать и диагностировать эту гармонику на спектре мы должны вести регистрацию с частотой не менее 5 кГц, а лучше больше, например, хотя бы 6 кГц. Это логично вытекает из правила Найквиста.

Теперь становится понятным, что одна регистрация вибрационного сигнала на тихоходном подшипнике должна производиться с частотой 6 кГц, и длительностью 20 секунд. Итоговая длина одной выборки должна составлять не менее 120 тысяч отсчетов АЦП. Такими возможностями обладают далеко не все приборы регистрации вибрационных сигналов, в том числе самые лучшие, это специфическое требование. Для 95% процентов приборов, имеющихся на современном рынке, максимальная длина выборки сигнала не превышает 8192 отсчета.

Второй важный вопрос, а каков частотный диапазон измерительного датчика, предназначенного для диагностики тихоходных подшипников качения? Что самое парадоксальное, многие утверждают, что чем ниже этот диапазон, тем лучше. А какой же диапазон необходим для диагностики подшипника, сигнал с которого приведен на нашем рисунке? При опросе 90% специалистов сказали, что необходим датчик с нижней граничной частотой от 0,05 Гц, и даже ниже.

Когда мы акцентировали внимание на том, что основная диагностическая частота составляет 2 кГц, это есть частота свободных колебаний конструкций «вокруг подшипника» после динамических ударов в зоне дефекта, даже после этого не все изменили свои требования к частотным свойствам измерительного датчика. Еще раз подчеркнем, что все эти рассуждения справедливы только для диагностики подшипников качения, для диагностики подшипников скольжения требования другие, более стандартные.

Заключим данные рассуждение следующим. Диагностику тихоходных подшипников качения следует проводить при помощи «импульсных» методов. Диагностика с использованием «прямых» спектров практически невозможна, а с использованием спектров огибающей вибрационного сигнала весьма сомнительна.

3.1.1.3. Диагностика дефектов по общему уровню вибрации

Данный способ оценки технического состояния и диагностики дефектов в подшипниках вообще, и в подшипниках качения в частности, входит в широко распространенную простейшую практику оценки общего технического состояния вращающегося оборудования по общему уровню вибрационного сигнала. Такая диагностика производится техническим персоналом без специальной вибрационной подготовки. Для проведения такой диагностики дефектов подшипников качения вполне достаточно использования простейшего виброметра, измеряющего общий уровень вибрации.

Как уже говорилось выше, такая диагностика дефектов подшипников качения позволяет определять дефекты только на самой последней стадии их развития, когда они уже приводят или уже привели к деградации состояния подшипников, повышению общего уровня вибрации. Диагностику дефектов подшипников по величине СКЗ виброскорости, а только для такой размерности вибрационного сигнала существуют критерии технического состояния оборудования, можно интерпретировать уже как предаварийную.

Критерии технического состояния, и степени развития дефектов в данном методе полностью ориентированы на соответствующие нормативные значения уровней вибрации, принятые для данного механизма. Дефектным в этом методе диагностики считается такой подшипник качения, вибрации которого превысили общую норму для агрегата, это является признаком дефектного состояния контролируемого подшипника качения. При таком пороговом повышении значения уровня вибрации, замеренной на опорном подшипнике, обслуживающему персоналу необходимо принимать решение о возможности дальнейшей работы агрегата или об остановке оборудования и замене подшипника.

Первые признаки дефекта подшипника данным методом диагностики обнаруживаются при обследовании оборудования персоналом достаточно поздно, примерно за несколько месяцев, недель или даже дней, что зависит от целого ряда особенностей работы данного подшипника, до момента полного выхода подшипника из строя. Несмотря на такое позднее обнаружение дефектов, и несколько скептическое отношение к этому методу специалистов со стажем, такой метод диагностики состояния подшипников качения достаточно широко используется в практике и дает неплохие результаты в тех случаях.

Максимальными преимуществами метод обладает в случаях, когда:

  • Основной задачей проведения диагностического обследования оборудования является только предотвращение аварий и их последствий, пусть даже диагностическая информация о наличии дефекта будет получена на достаточно позднем этапе.
  • Останов оборудования для замены подшипника могут быть выполнены в любое время, без какого - либо ущерба для работы контролируемой установки и технологического цикла всего предприятия, без нарушения общего процесса.
  • Если цикличность проведения ремонтных работ на контролируемом оборудовании такова, что оставшийся срок службы подшипника с диагностированным дефектом, пусть даже минимальный, всегда превышает оставшееся время работы до его вывода в ремонт по другим причинам.

Достоинством такого, самого простейшего метода диагностики дефектов подшипников качения по общему уровню вибрации, является так же и то, что для его применения не требуется практически никакого дополнительного обучения обслуживающего, а часто и эксплуатационного персонала. Кроме того стоимость технического оборудования, необходимого для данного метода диагностики, минимальна.

Если на предприятии ранее не велись какие-либо работы по вибрационной диагностике, то данный метод диагностики обеспечивает наибольшую эффективность при своем внедрении. Применение всех других методов диагностики подшипников качения всегда требует больших начальных материальных затрат, и дает экономический эффект только на более поздних стадиях работы.

В заключении по данному вопросу следует сказать, что неожиданно высокую эффективность может иметь диагностика дефектов подшипников качения наиболее простым способом – «на слух». Для этого необходимо наличие какого-либо устройства для прослушивания подшипников, например типа стетоскопа, или виброметра с подключаемыми наушниками. Если ничего даже этого нет, то можно воспользоваться любой сухой деревянной палочкой достаточных размеров.

Если приложить ее одним концом к контролируемому подшипнику, а вторым концом к уху, то при наличии дефекта в подшипнике можно очень явственно услышать высокий, негромкий, приятный звон, называемый иногда «бронзовыми колокольчиками». Стоит только один раз его услышать, и спутать его уже будет нельзя ни с чем. Достоверность диагностики дефектных подшипников таким методом очень велика.

3.1.1.4. Диагностика дефектов подшипников по спектрам сигналов

Большинство специалистов по вибрационной диагностике, если они начинают заниматься подшипниками качения, ожидают наибольшей достоверности и наибольшего эффекта при внедрении диагностики по классическим спектрам вибрационных сигналов. Такие спектры, в отличие от спектров огибающей вибрационного сигнала, также используемых для диагностики подшипников качения, достаточно часто называют «прямыми», и этот термин мы тоже будем применять.

К сожалению, чаще всего именно здесь их оптимистическим ожиданиям не суждено будет сбыться. Мало того, что сама процедура диагностики является достаточно сложной и противоречивой, достоверность большинства практических диагнозов по состоянию подшипников качения, полученных при использовании таких «прямых» спектров вибрационных сигналов, является неожиданно низкой. Метод, предназначенный для решения самых сложных диагностических задач вращающегося оборудования, не дает хороших результатов при диагностике «копеечных» подшипников качения!

«Неожиданность» такого парадокса запрограммирована заранее и заложена в особенностях диагностики по спектрам вибрационных сигналов. Ошибки диагнозов заранее прогнозируемы и заключаются в том, что классический спектр есть, по своему определению, распределение мощности исходного временного вибросигнала в частотной области. По этой, причине появление на спектре характерных гармоник того или иного элемента подшипника качения, следует ожидать только в том случае, когда дефект разовьется до такой степени, когда мощность его гармоник будет соизмерима с мощностью «механических» гармоник, связанных с небалансом, расцентровкой. Только в этом случае на спектре можно уверенно диагностировать «подшипниковые» гармоники, когда они будут иметь не только большую амплитуду, но и существенную мощность.

Для того, чтобы повысить чувствительность данного диагностического метода к «подшипниковым гармоникам» с малой мощностью, применяются различные способы, например, амплитуды гармоник в анализируемых спектрах представляются в логарифмическом масштабе. Это конечно помогает, но до определенного значения, когда гармоники уже начинают маскироваться общим «белым шумом», который в вибрационных сигналах имеет значительную амплитуду.

В соответствии с приведенной в начале главы градацией развития дефектов подшипников качения на этапы можно сказать, что диагностика по спектрам вибрационных сигналов может уверенно выявлять дефекты подшипников качения, начиная только с конца первого этапа их развития, а чаще с середины второй зоны. Причем даже на этом уровне диагностика по «прямым» спектрам вибрационных сигналов является делом достаточно непростым, и имеет ряд специфических особенностей.

Ниже мы попытаемся рассмотреть эти особенности, значительно усложняющие диагностику дефектов подшипников качения по прямым спектрам.

Начнем с требований, которые предъявляются к приборам регистрации и анализа вибрационных сигналов. Используемый для диагностики подшипников качения измерительный прибор должен обязательно иметь высокое частотное разрешение, не менее, чем 3200 линий в спектре. В противном случае произойдет «размазывание» мощности узкого ударного пика дефекта по достаточно широкой спектральной полосе, что приведет к резкому занижению амплитуды характерной подшипниковой гармоники, что однозначно исказит результаты проводимой диагностики. Как мы уже писали раньше, таких приборов находится в эксплуатации не так много, обычно частотное разрешение приборов значительно меньше.

Вполне понятно, что раз диагностика подшипников качения, чаще всего, ведется на анализе динамических процессов, то измерения необходимо вести в размерности виброускорения, в котором эти процессы более значимы. Хотя в некоторых методах диагностики необходимо анализировать энергетическую составляющую колебаний, для чего следует пользоваться измерениями в размерности виброскорости.

Далее обратимся к основным особенностям проявления дефектов подшипников в исходных вибрационных сигналах, и в получаемых на их основе «прямых» спектрах мощности. Таких характерных особенностей существует несколько.

Рассмотрим сначала форму ударных импульсов, возникающих при ударных воздействиях от дефектов подшипников, возникающих в вибрационном сигнале. Для этого рассмотрим простейший пример вибрационного сигнала, приведенный на рисунке 3.1.1.4., зарегистрированного на дефектном подшипнике качения. После каждого удара в дефектной зоне подшипника возникают свободные резонансные колебания, которые обычно затухают по экспоненциальному закону.

Вероятность появления таких ударных периодических импульсов, имеющих весьма характерный вид, сопровождающих процесс обкатывания дефекта подшипника, близка к 100 %. Для описания формы этих процессов особенностей даже придуман специальный термин – «золотая рыбка». Наличие импульсов такой формы в вибрационном сигнале является надежным диагностическим признаком для выявления дефектов подшипников.

Частота следования этих «золотых рыбок», точнее говоря их плавников и хвостиков, во временном сигнале должна достаточно точно соответствовать частоте, характеризующей дефект того или иного элемента подшипника. Интенсивность «золотых рыбок», степень их выраженности, превышения над общим фоном вибрации, зависит от степени развития дефекта. Пример такого вибросигнала с двумя «золотыми рыбками» приведен на нашем рисунке. Сразу же обратим внимание читателя на то, что «на один оборот ротора» может приходиться различное количество ударных импульсов, частота их следования определяется не оборотной частотой ротора, а расчетными «подшипниковыми» частотами.

В реальных вибрационных сигналах «золотая рыбка» не бывает такой красивой, чаще всего форма ее является более «лохматой». У нее имеются различные «дополнительные плавники», располагаемые сверху, или снизу. Ударные импульсы могут следовать один за другим, часто даже наслаиваясь друг на друга. Все это зависит от реальной частоты следования ударов от дефектов, и от собственных резонансных свойств механической конструкции или ее отдельных элементов.

Вторая, основная диагностическая особенность заключается в наличии специфического проявлении дефектов подшипников качения в «прямых» спектрах вибрационных сигналов. Непосредственно при проведении диагностики можно выявить три типа возможных, наиболее часто встречающихся типа спектров вибросигналов, соответствующих различным этапам развития дефектов.

Диагностическая стадия 1

Первые признаки дефектов на спектре вибросигналов появляются тогда, когда дефект подшипника, возникнув, разовьется до такого уровня, что выделяемая им энергия (в золотых рыбках) станет сравнительно заметной в общей энергии вибрации подшипника, т. е. будет представлена на спектре. Применительно к вышеописанному разделению на этапы развития дефектов, приведенному на рисунке 3.1.1.1., это примерно конец первого этапа - начало второго. По срокам это бывает примерно несколько месяцев с момента начала развития дефекта. Пример спектра первой стадии приведен на рис. 3.1.1.5.

В этом спектре, наряду с первыми, механическими, гармониками оборотной частоты вращения ротора, появляется пик на характерной частоте дефекта того или иного элемента подшипника. На этой стадии развития дефекта характерная «подшипниковая» гармоника уже хорошо видна на спектре, что позволяет достаточно точно выявлять дефектный элемент, особенно если представлять амплитуду гармоник в логарифмическом масштабе.

По своей амплитуде пик характерной гармоники уже соизмерим с амплитудой первой или второй гармоник оборотной частоты ротора, но по своей мощности еще много уступает им. На спектре это выражается тем, что пик подшипниковой гармоники является очень узким. Дефект появился, но еще не является сильно развитым, динамические удары при обкатывании дефекта есть, но амплитуда и энергия их еще не очень значительна.

Эта стадия, соответствующая специфическому проявлению дефектов подшипников в спектрах вибрационных сигналов, и завершается тогда, когда амплитуда характерной гармоники достигает своего максимума, примерно равного амплитуде оборотной гармоники, и уже больше не растет. Она если и будет превышать оборотную гармонику, то не на много, не более 30%. Причина этого проста – энергия подшипниковых гармоник автоматически «вносится» преобразованием Фурье - FFT в состав оборотной гармоники. Как следствие срабатывает логическое правило, говорящее о том, что одно слагаемое не может быть больше итоговой суммы.

Диагностическая стадия 2

Следующая стадия развития дефекта подшипника качения начинается тогда, когда на спектре рядом с подшипниковой гармоникой, очень близко, появляется первая пара боковых гармоник, располагающихся слева и справа.

Появление боковых гармоник обозначает, что начался этап пространственного расширения зоны дефекта в подшипнике вдоль поверхностей качения, что иллюстрируется рисунком 3.1.1.6. В этой зоне дефект имеет уже такие размеры (глубину), что при «проваливании» тела качения в зону дефекта он смещается настолько, что основную нагрузку по поддержке вала механизма уже берут на себя рядом расположенные тела качения. «Ступенька», с которой «прыгает» тело качения в зоне дефекта, практически не может быть очень большой, ее величина зависит от общей степени износа подшипника качения. В результате увеличение амплитуды динамических импульсов больше не происходит. Вся энергия этих импульсов теперь уходит не на углубление, а уже на расширение зоны дефекта, возникающее за счет постепенного «раскрашивания» границ зоны дефекта.

На этой стадии диагностики дефектов подшипников по спектрам вибрационных сигналов значительно увеличивается «вклад дефекта» в общую вибрацию контролируемого механизма. Подшипниковая гармоника увеличивает свою мощность до такого значения, что становится соизмерима с основными механическими гармониками - первой и второй. Результатом наличия в вибросигнале двух, как минимум, гармоник - синхронной и несинхронной примерно одинаковой мощности возбуждает в агрегате частоты биений. Эти частоты биений проявляются в спектре в виде боковых полос вблизи характерной подшипниковой гармоники. По мере роста мощности подшипниковой гармоники с расширением зоны дефекта число боковых полос и их мощность постепенно возрастает.

Дальнейшее развитие дефекта приводит уже к появлению новых семейств гармоник, уже от самой характерной подшипниковой частоты. Обычно появляются гармоники с номером два и три от основной частоты подшипникового дефекта. Рядом с каждой такой гармоникой слева и справа тоже будут иметь место боковые частоты, число пар которых может быть достаточно большим. Чем более развит дефект, тем больше боковых гармоник и у гармоник частоты дефекта.

Гармоники от подшипниковых частот с большим номером, чем три, регистрируются достаточно редко. Это происходит по той причине, что хотя более высокочастотные гармоники и возникают, но мы не можем их зарегистрировать на внешней поверхности подшипниковых опор. Чем выше частота возникающих колебаний, тем более интенсивно это колебание будет затухать внутри подшипниковой опоры, на участке от места возникновения до места установки первичного измерительного датчика.

Пример спектра вибросигнала подшипника качения с таким уровнем развития дефекта показан на рисунке 3.1.1.7. На этом спектре есть две гармоники от характерной частоты подшипникового дефекта, первая и вторая. Вокруг каждой гармоники расположено по две пары боковых гармоник, расположенных слева и справа.

Износ подшипника, обладающего таким набором характерных гармоник в спектре, уже очевиден. Пространственно он может простираться почти по всей рабочей поверхности подшипника, он уже стал групповым, захватив несколько элементов подшипника. Подшипник нуждается в замене или к такой процедуре нужно интенсивно готовиться.

Хочется завершить описание этого этапа развития дефекта в подшипнике качения небольшим, но методически важным сравнением, связанным с использованием общего подхода к диагностике дефектов вращающегося оборудования. При внимательном рассмотрении видно, что такой состав гармоник подшипниковой частоты, который показан на рисунке 3.1.1.7., если не брать во внимание боковые гармоники, очень похож на состав гармоник оборотной частоты ротора, имеющий место при наличии механического ослабления в роторе, так же называемого люфтом, описанном в соответствующем разделе.

Такое совпадение типов дефектов реально есть и на самом деле. Появление на спектре гармоник подшипниковой частоты говорит именно о развитии механического ослабления, так как при такой степени развития дефекта фиксация ротора в дефектном подшипнике становится уже недостаточно точной. Следствием такого совпадения проявления дефектов является примерное равенство наборов основных гармоник, возникающих в обоих случаях – при общем ослаблении ротора, и при ослаблении в опорном подшипнике.

Диагностическая стадия 3

Это последняя стадия развития дефектов подшипника. В конце этой стадии подшипник уже полностью деградировал и перестал исполнять свои прямые функции - обеспечивать вращение валов при минимальных затратах на трение. Потери на трение в подшипнике велики, и вращение ротора затруднено.

Развитие дефекта подшипника на этой стадии, при диагностике его по спектрам вибрационных сигналов, проходит следующим образом. Износ подшипника достигает такой стадии, когда характерная частота дефекта, из-за очень большого расширения зоны дефекта, становится нестабильной, такая же участь постигает боковые гармоники. Наложение многих семейств гармоник, каждое из которых состоит из основной частоты и боковых гармоник, создает достаточно сложную картину. Если в этих семействах основные гармоники различаются по частоте немного, то сумма всех этих частот представляет собой общее поднятие спектра, «энергетический горб», захватывающий такой диапазон частот, куда входят все гармоники всех семейств от всех уже существующих дефектов подшипника качения.

На общем фоне «энергетического горба» могут выделяться отдельные гармоники, но обычно все они носят случайный характер, как по частоте, так и по амплитуде, и уже практически ничего конкретного не отражают. Они просто увеличивают мощность, сосредоточенную в этом частотном диапазоне спектра.

Практически вся мощность вибрационного сигнала сосредоточена не в зоне наиболее значимых механических гармоник, с первой по десятую, а в зоне характерных гармоник, соответствующих имеющим место дефектам диагностируемого подшипника качения. Правда на этом этапе таких дефектов уже много, и это понятно, подшипника уже практически нет, есть «сплошной дефект» всех элементов подшипника. Для иллюстрации этой стадии на рисунке 3.1.1.8. приведен спектр вибросигнала. На рисунке достаточно хорошо видны все вышеперечисленные особенности диагностирования третьей стадии развития дефекта.

Кроме того в диапазоне гармоник, свойственных механическому ослаблению и увеличенному зазору в подшипнике поднимается лес целых гармоник оборотной частоты. Все они по своим параметрам соответствуют вышеназванным механическим причинам. Причины возникновения таких гармоник вполне понятна, в контролируемом подшипнике велики все зазоры, о чем мы уже писали немного раньше. Только на этом этапе мы имеем механическое ослабление не на уровне дефектов тел качения, а на уровне увеличения зазоров в опорных подшипниках. В результате и возникают множественные гармоники оборотной частоты ротора.

Диагностическое заключение о техническом состоянии такого подшипника качения очень простое - он нуждается в скорейшей замене, т. к. возможность возникновения аварийной ситуации с контролируемым оборудованием очень велика.

Здесь мы подошли к самому главному в диагностике любого оборудования любым методом. Каковы финальные и промежуточные критерии для оценки технического состояния подшипника качения? Как оценить уровень развития выявленного дефекта - на основании сравнении амплитуд конкретных гармоник, или анализируя иные параметры гармоник характерных подшипниковых частот. К сожалению, в очередной раз вынуждены разочаровывать нашего читателя, таких однозначных для практики значений нет, или, если говорить еще более точно, нам они неизвестны.

В практике диагностам чаще всего приходится оперировать терминами типа «больше – меньше», или «более развитый дефект – менее развитый». Все зависит от очень многих параметров – от типа подшипника, особенностей его монтажа, величины технологической нагрузки на подшипник, и от много другого. Говоря иными словами, уровень дефекта подшипника в каждом механизме свой, уникальный. На величину порога каждого дефекта даже сказывается выбранное место для установки датчика, удаление от места возникновения дефекта. Например, в самом простейшем случае, дефект внутренней обоймы подшипника качения менее заметен в вибрационном сигнале, чем дефект его внешней обоймы.

Определение истинного уровня недопустимого развития дефекта подшипников качения, точнее говоря определение истинной степени развития каждого дефекта каждого подшипника, чаще всего представляет наибольшую сложность, и значительно увеличивает трудоемкость использования метода диагностики по прямым спектрам. Нет ничего полезнее и важнее, чем практический опыт, накопленный по результатам диагностических измерений и сравнения их с результатами, полученными в процессе ремонтных работ.

В заключение по данному вопросу хотелось бы немного повторить уже сказанное, дополнив его некоторыми специфическими признаками:

  • Все подшипниковые частоты обычно модулируются частотой вращения ротора, что приводит к возникновению вокруг них характерных боковых гармоник. По мере углубления дефекта число боковых гармоник растет. Дополнительная мощность вибрации от дефекта оказывается сосредоточенной не в основной гармонике дефекта, а вокруг нее, причем в достаточно широком диапазоне частот.
  • Достаточно часто бывает, что реальные частоты характерных гармоник от отдельных элементов подшипника не соответствуют рассчитанным значениям, причем по мере «углубления и расширения зоны дефектов» это отличие может увеличиваться.
  • Чаще всего при значительных степенях развития дефектов на спектре возникают «энергетические горбы» - участки с общим поднятием уровня, имеющие большое количество случайных пиков. Такие «горбы» могут возникнуть как вблизи характерной частоты, так и вблизи частоты резонанса конструкции или ее отдельного элемента. Часто «энергетический горб» бывает в двух местах спектра, и на характерной частоте и на резонансной. Достаточно часто, при развитом дефекте, сама гармоника характерной частоты, вокруг которой появился и вырос «энергетический горб», на спектре отсутствует. Иногда число «горбов» может быть три или даже больше.

3.1.1.5. Диагностика с использованием пик - фактора

В данном разделе кратко рассмотрим те методы диагностики подшипников качения, в которых идет анализ наличия дефектов подшипников по соотношению на временных вибросигналах пиков и общего уровня «фона» вибрации. Одна из таких временных зависимостей, по которым может выполниться такая диагностика, приведена в начале данного раздела на рисунке 3.1.1.1.

В силу устоявшейся практической привычки мы называем эти, во многом достаточно разные методы диагностики подшипников качения, общим наименованием – «диагностикой по пик – фактору», хотя разработчики многих компаний придумали разновидностям этого метода иные названия. Применяемый нами диагностический признак «пик – фактор» не является единственным и полностью общепринятым в практике, но в силу того, что оно хорошо отражает физический смысл этого метода, мы используем его преимущественно.

Как уже говорилось выше, этот метод диагностики подшипников качения имеет несколько достаточно широко известных разновидностей. Эти разновидности разрабатывались разными компаниями, в них несколько по-разному производят сравнение уровней пика и фона вибросигнала. В одном методе для сравнения берется амплитуда пика, в другом энергия, фоновый уровень также может рассчитываться по-разному.

Мы уже называли основные разновидности этого метода:

  • Диагностика с использованием СКЗ вибрационного сигнала и пиковых значений – классический метод диагностики по пик фактору.
  • Диагностика с использованием соотношения эксцесса вибрационного сигнала и общего уровня.
  • Метод HFD (High Frequency Detection - метод обнаружения высокочастотного сигнала).
  • Метод SPM (Shock Pulse Measurement - метод измерения ударных импульсов).
  • Метод SE (Spike Energy - метод измерения энергии импульса).

Лучшие разновидности данного метода позволяет выявлять дефекты подшипников качения на достаточно ранних стадиях, начиная примерно с конца первого этапа развития. Приборы, реализующие данный метод диагностики дефектов достаточно просты и дешевы.

При более общем взгляде на все эти методы видно, что они, в силу одинакового теоретического, методического и даже приборного подхода к решению проблемы, имеют примерно и одинаковую трудоемкость, и почти одинаковую достоверность поставленных диагнозов. Для этих методов нужна примерно одинаковая техническая база - специализированные переносные виброметры с встроенными двумя типами детекторов вибросигналов - детектором среднего уровня вибросигнала и пиковым детектором.

Использование обобщенного количественного соотношения двух величин по типу – «средний уровень – пик» позволяет диагносту определять дефекты подшипника на достаточно ранних стадиях их развития, что является несомненным достоинством применения такого подхода к диагностике.

Каждая из известных нам компаний-разработчиков диагностических методов по своему, с использованием собственного опыта, решила проблему нормирования этапов развития диагностируемых дефектов, но практическое представление этих наработок примерно одинаково - это специальные таблицы или номограммы, достаточно удобные для практического использования. Какого - либо обобщающего исследования, сравнивающего эти методы между собой нет, да и очевидно быть не может. Все они примерно с равным успехом применяются в практике.

Вопросы методики практического проведения замеров вибрации в этих методах не имеют достаточно подробного описания. Это является результатом того, что эти достаточно простые методы диагностики ориентированы на использование персоналом, не обладающим специальной диагностической подготовкой. Поэтому сама технология проведения замеров должна быть очень простой, не «затуманенной» сложными теоретическими выкладками.

Мы не будем заниматься сравнением всех этих методов диагностики подшипников качения по «пик – фактору» между собой, не будем выискивать достоинства и недостатки как самих методов, так и компаний-разработчиков. Это уже специальный, можно даже сказать коммерческий вопрос, выходящий за пределы основных задач, решаемых данным методическим руководством.

Будет лучше, когда каждый конкретный пользователь сам примет свое решение по данному вопросу, какой из методов диагностики подшипников качения с использованием «пик – фактора» ему нравится больше всего, и с успехом использует его на практике. Тем более, такой диагностикой чаще всего занимаются не специалисты, которые, как мы надеемся, читают эту книгу.

3.1.1.6. Диагностика дефектов подшипников по спектрам огибающей

Метод диагностики состояния вращающегося оборудования при помощи спектров огибающей вибрационного сигнала получил максимальное прикладное развитие благодаря его применению именно для ранней диагностики технического состояния подшипников качения. Основы метода диагностики дефектов подшипника качения по спектру огибающей и особенности его практического применения достаточно подробно описаны выше, и поэтому не будем здесь все это повторять.

Если говорить кратко и очень просто, суть этого метода заключается в детектировании высокочастотных хвостиков «золотых рыбок» (смотри рисунок 3.1.1.4), и получения спектра от полученной огибающей высокочастотного сигнала. Полученная кривая, огибающая исходный вибрационный сигнал, является более информативной для диагностики дефектов подшипников качения, чем исходный сигнал, так как она принудительно «избавлена» от ненужной высокочастотной информации. По этой причине на спектре от данной кривой более явно представляются гармоники, соответствующие характерным подшипниковым частотам, математические формулы, предназначенные для расчета которых также приведены выше, в начале данного раздела.

Процедура проведения регистрации огибающей вибрационного сигнала достаточно сложна. Она должна учитывать несколько специфических особенностей, позволяющих повысить чувствительность метода.

  • Во-первых, регистрация производится не во всем частотном диапазоне, в котором может работать измерительный прибор, а только в узкой его полосе. Поскольку первые применения данного метода чаще всего проходили с использованием аппаратуры компании «Брюль & Къер», которая наряду с созданием приборов вибрационного контроля занималась акустическими измерениями, для определения параметров полос частот использовались октавные определения. В настоящее время стандартом для расчета огибающей сигнала считается использование треть октавных фильтров, или близких к ним.
  • Во-вторых, достаточно сложным является выбор необходимой полосы частот, перестройка которой осуществляется при помощи управляемых фильтров высокого порядка. С одной стороны, в этой полосе частот должны быть максимальны высокочастотные колебания, которые возникают после динамических ударов в зоне дефекта подшипника. С другой стороны, в выбранной полосе частот должны быть минимальны колебания, связанные с другими причинами, приводящими к увеличенным вибрациям в зоне опорных подшипников.

Как вы уже догадались, практически для каждого контролируемого подшипника этот вопрос приходится решать отдельно. Слишком от многих конструктивных и эксплуатационных параметров это зависит.

Мы достаточно подробно описываем этот вопрос потому, что от правильного его решения во многом зависит точность и достоверность проводимой диагностики дефектов подшипников качения.

Далее мы приведем, причем уже в конечном виде, общей таблицей, практически полный перечень дефектов, которые можно диагностировать в подшипниках качения при помощи спектральных методов - по классическим спектрам и спектрам огибающей. Всего в этой таблице приведено 15 наиболее часто встречающихся причин повышенной вибрации - дефектов подшипников с различной локализацией.

Все дефекты в таблице представлены в определенном хронологическом порядке, связанным с этапами «жизненного цикла» подшипника качения в оборудовании. Сначала идут дефекты, связанные с монтажом подшипников, с которыми приходится встречаться уже на этапе ввода оборудования в эксплуатацию. Далее идут дефекты смазки, т. е. эксплуатации подшипников. За ними следуют проблемы, связанные уже с износом рабочих поверхностей подшипников. Замыкают таблицу явно выраженные и уже сильно развитые дефекты элементов подшипников типа, «скол» и «раковина» на поверхностях качения.

В графе «тип сигнала» указывается параметр, при помощи которого наиболее эффективно проводить диагностику каждого дефекта. Это может «прямой» спектр, спектр огибающей сигнала, или их комбинация. В графе «основная частота» указывается или оборотная гармоника, или подшипниковые гармоники, являющиеся основными при диагностике. В следующей графе указывается, на какие гармоники от основной частоты следует обращать основное внимание. И в последней графе «порог» указывается уровень модуляции вибрационного сигнала основной диагностической гармоникой. Этот параметр рассчитывается по стандартным формулам обработки сигналов, которые следует взять из теории анализа модулированных радиосигналов.

N Дефект подшипника Тип сигнала Основная частота Гармоники Порог
1. Проблемы монтажа подшипников качения
1 Перекос наружного кольца при посадке Спектр + огибающая 2 х Fн k=1,2 16 %
2 Неоднородный радиальный натяг Спектр + огибающая k x F1 k=1,2 13 %
3 Проскальзывание в посадочном месте Огибающая k x F1 k=1,2,3 9 %
4 Ослабление крепления подшипника Спектр k x F1 k=0.5,1,2,3 13 %
5 Задевания подшипнике и уплотнениях Спектр k x F1 k=0.5,1,1.5, 2,2.5,3 13 %
6 Обкатывание наружного кольца Спектр + огибающая F1 16 %
2. Проблемы смазки
7 Проблемы смазки Фон вибрации - - 20 dB
3. Проблемы износа подшипников качения
8 Увеличенные зазоры в подшипнике Спектр k x F1 k=1,2,3,4,5,6... 13 %
9 Износ поверхности наружного кольца Огибающая - 16 %
10 Износ поверхности тел качения Огибающая Fc или F1-Fс k=1,2,3 15 %
11 Износ поверхности внутреннего кольца Огибающая kxF1 k=1,2,..6 13 %
12 Дефект группы поверхностей трения Огибающая Fн + Fв Fн+F1 k=1,2,... 16 %
4. Критические дефекты подшипников качения
13 Раковины (сколы) на наружном кольце Огибающая k x Fн k=1,2,3 16 %
14 Раковины (сколы) на внутреннем кольце Огибающая k x Fв k=1,2,3 15 %
15 Раковины (сколы) на телах качения Огибающая k x Fтк k=1,2,3 15 %

Проблемы изготовления и монтажа подшипников можно отнести к нулевому этапу развития дефектов подшипников, когда эксплуатация подшипника еще даже не началась. Проблемы смазки и начальные этапы износа соответствуют первому этапу, когда дефекты поверхностей качения только зарождаются.

Сильный износ и зона углубления физических дефектов подшипников относятся ко второму этапу развития дефектов в подшипниках. Как уже говорилось выше, третий этап развития дефектов в подшипниках, начало их деградация, диагностируется уже любым методом.

Для иллюстрации возможностей диагностики дефектов подшипников качения, приведем несколько характерных спектров огибающей вибросигнала, свойственных нескольким наиболее характерным дефектам.

На рисунке 3.1.1.9. приведен спектр огибающей вибрационного сигнала с подшипника качения, имеющего значительную раковину на наружном кольце. На приведенном спектре может иметься достаточно много гармоник, иногда даже более десяти. Все они, по своей частоте, кратны частоте обкатывания наружного кольца подшипника качения, т. е. являются ее гармониками. Других, значительных, характерных гармоник на данном спектре просто нет, поэтому вибрационная диагностика данного дефекта подшипников качения не вызывает значительных трудностей, диагностическая картина дефекта здесь достаточно простая.

На следующем спектре огибающей вибрационного сигнала, приведенном на рисунке 3.1.1.10., следует диагностировать дефект типа раковина на внутреннем кольце. Здесь также имеются гармоники характерной частоты - частоты внутреннего кольца, но здесь есть существенное отличие. Характерные гармоники имеют боковые полосы, сдвинутые на частоту вращения ротора. Появление боковых полос объяснялось выше с физической точки зрения.

Можно привести еще одно объяснение причин появления боковых гармоник, с другой точки зрения. Дефект на внутреннем кольце не постоянно находится в нагруженной зоне подшипника. В течении одного оборота ротора он то находится в нагруженной зоне, то выходит из нее. Таким образом, дефект внутреннего кольца модулируется частотой вращения ротора. При внимательном рассмотрении спектра на рис. 3.1.1.10. возникает впечатление, что дефект модулируется синусоидой, по которой и располагаются амплитуды основных и боковых гармоник. Данный дефект диагностируется тоже достаточно просто.

Мы не будем приводить примеров спектров огибающих для других дефектов подшипников качения. Все они достаточно просты и могут быть легко дифференцированы после небольших рассуждений. Вся сложность проведения диагностики дефектов по спектру огибающей заключается в получении этих спектров, а дальше все уже достаточно просто.

Уровень дефекта на диагностических спектрах огибающей определяется по величине модуляции огибающей данного вибросигнала характерной гармоникой. Диагностируемые дефекты принято характеризовать в данном методе диагностики уровнями - слабый, средний и сильный. Нормированию подлежит порог сильного дефекта, в долях от которого в дальнейшем рассчитываются пороги среднего и слабого уровней. Порог среднего уровня дефекта чаще всего считают равным половине от величины порога сильного дефекта. Порог слабого уровня дефекта обычно определяют в 20 процентов от уровня порога сильного дефекта.

Самым ответственным считается корректное определение уровня порога сильного дефекта. При этом приходиться учитывать три аспекта работы подшипника и способа проведения замера вибрации:

  • Чем больше размер подшипника, тем более высоким должен быть уровень порога сильного дефекта. Большой подшипник «звенит» сильнее.
  • Чем выше рабочая частота вращения ротора механизма, тем выше должен быть уровень порога сильного дефекта. При быстром вращении от подшипника больше шума.
  • Измерительный датчик должен располагаться как можно ближе к контролируемому подшипнику. При удалении датчика часть полезной информации затухает в конструкции и уровень порога сильного дефекта необходимо понижать.

Для каждого нового конкретного типа оборудования, точнее говоря, даже для каждого подшипника в каждом оборудовании, уровень порога сильного дефекта реально приходиться каждый раз подбирать сугубо индивидуально, не рассчитывать, а именно подбирать.

Величина порога сильного дефекта во многом зависит от удаленности элемента с дефектом от измерительного датчика. Пороги дефектов внутреннего кольца подшипника всегда ниже порогов дефектов наружного кольца. Это объясняется увеличением затухания полезной составляющей вибросигнала на более длинном пути передачи, включая дополнительные зазоры в подшипнике.

Для справки напомним, что для примера усредненные, наиболее часто встречающиеся, значения уровней порогов сильных дефектов приведены выше в таблице, где перечислены диагностируемые в подшипниках качения дефекты. В зависимости от примененного способа диагностики дефектов подшипника в таблице имеется две разновидности единиц, в которых нормируется уровень сильного порога.

При использовании для диагностики дефекта подшипника классических спектров вибросигналов уровень порога сильного дефекта может быть задан в долях от нормированного допустимого значения виброскорости на данном подшипнике или так же в процентах модуляции. При сравнении с нормой необходимо использовать не полное, абсолютное значение виброскорости на данном подшипнике, а только ту ее часть, которая наведена диагностируемым дефектом. Это несколько сложнее, но в конечном итоге более точно.

При определении качества смазки за базу для сравнения берется общий уровень «фоновой» вибрации исправного подшипника с хорошей смазкой. При повышении общего уровня «фона» вибрации в десять раз, т. е. на 20 dB, качество смазки считается неудовлетворительным.

Еще раз хочется напомнить, что в таблице приведены только общие, усредненные значения уровней порогов сильных дефектов. У конкретных подшипников возможен разброс этих значений на ± 40 % или даже несколько больше. Все зависит от типа подшипника и условий его работы.

Сам факт диагностирования того или иного дефекта подшипника несет в себе полезную информацию, но эта информация мало применима для практики. Обслуживающий персонал больше интересует вопрос о возможности дальнейшей практической эксплуатации оборудования с дефектным подшипником и тех ограничениях, которые накладывает обнаруженный дефект на возможности использования оборудования. Очень важным для практики является вопрос о сроках проведения очередного ремонта. Все эти вопросы относятся уже к сфере, относящейся к системе обслуживания оборудования.

Вопрос прогнозирования остаточного ресурса подшипника качения во многом напоминает прогнозирование общего остаточного ресурса оборудования, но и имеет свои индивидуальные особенности. Не вдаваясь в подробности, рассмотрим основные проблемы, возникающие при расчете остаточных ресурсов подшипников.

  • Каждый подшипник имеет свои уникальные физические особенности, приводящие к специфическим внутренним процессам. Поэтому каждый подшипник должен описываться своей математической моделью.
  • Каждый подшипник должен описываться двумя различными моделями - одна должна описывать общие процессы износа подшипника без дефектов, а другая должна описывать процессы развития внутренних дефектов.
  • Время полного развития дефектов, находящихся на разных элементах подшипника, например не внешнем кольце или на сепараторе, различно. Для дефектов каждого элемента подшипника должна существовать своя математическая модель.

Даже из этого простого перечисления особенностей математического описания физических процессов в подшипнике качения видно, насколько сложна задача прогнозирования остаточного ресурса подшипника по итогам проведения вибрационной диагностики.

Первоначально состояние подшипника «контролируется» при помощи достаточно стабильной модели нормального износа, когда в нем отсутствуют внутренние дефекты. Так продолжается до момента выявления в подшипнике какого-либо дефекта. Здесь приходится отказываться от нормальной модели и переходить к моделям развития дефектов. Очень важной задачей, решаемой при переходе от нормальной модели к контролю состояния по модели развития дефекта, является как можно более точное определение времени зарождения дефекта. Чем точнее оно будет определено, тем более достоверными будут дальнейшие прогнозы по величине остаточного ресурса подшипника.

Максимальная скорость развития разных дефектов различна, поэтому контролировать следует развитие всех возможных дефектов, даже когда один из них только что зародился, а другой уже достаточно развит. Никогда нельзя заранее сказать, какой из дефектов раньше всех разовьется до недопустимого уровня и послужит причиной смены подшипника качения при ремонте.

Периодичность проведения диагностических измерений вибрации зависит от максимальной скорости развития дефекта подшипника в данном оборудовании. В практических случаях замеры могут проводиться через интервал времени от нескольких часов до одного года. При нормальной эксплуатации типового оборудования и проведении замеров примерно через шесть месяцев удается выявить большую часть дефектов на достаточно ранней стадии и предупредить аварии.

После выявления первых признаков зарождающегося дефекта интервал времени между двумя измерениями необходимо сократить. В зависимости от локализации дефекта интервал времени между замерами сильно меняется. Он минимален при дефектах тел качения, которые могут развиваться очень быстро.

Подшипник подлежит замене или ежедневному наблюдению при наличии в нем двух сильных дефектов.

Для обеспечения необходимой точности расчета остаточного ресурса и даты проведения ремонта в расчетах необходимо применение математических моделей с порядком не ниже третьего - четвертого. Если вспомнить, что один подшипник описывается не менее, чем десятком математических моделей, то становятся представимыми те математические затраты, необходимые для корректного прогнозирования параметров эксплуатации подшипника качения. А таких подшипников на предприятии в работе может одновременно находиться в работе несколько тысяч.

Процедура контроля состояния многих подшипников на предприятии становится возможной только при использовании компьютеров, в которых создаются и работают базы данных по подшипникам и современные экспертные системы диагностики.

Приборы нашего производства для диагностики подшипников качения

  • ДПК-Вибро – компактный виброметр, прибор оперативной диагностики подшипников качения
  • Vibro Vision-2 – анализатор вибросигналов с расширенными функциями диагностики подшипников качения

© 2024
artistexpo.ru - Про дарение имущества и имущественных прав