25.09.2019

Классификация метеоритов и их стоимость. Происхождение метеоритов. Источники метеоритов. Характеристики метеоритов. Химический и минералогический состав метеоритов


Метеоритами называют осколки или обломки, сложенные материалом, напоминающим горную породу, и занесенные на Землю из мирового пространства. Их можно рассматривать и как внеземные горные породы.

Масса метеоритного вещества, падающего на Землю каждые сутки, составляет от 1000 до 10 000 т. Однако 75% всех метеоритов очень мелки: их диаметр менее 0,1 мм. И лишь незначительная часть этих обломков достигает поверхности Земли. Большая часть их сгорает, входя в атмосферу и вызывая всем знакомое явление "падающих звезд".

Самый крупный из доныне известных метеоритов упал в доисторические времена близ фермы Хоба-Уест, неподалеку от Гротфонтейна в Намибии. Его масса составляла приблизительно 50 т, а объем - около 9 м. Особенно крупные метеориты при падении на Землю вследствие колоссальной скорости полета вызывают явления, подобные взрыву, которые сопровождаются возникновением округлых кратеров. Более мелкие метеориты, напротив, настолько затормаживаются при прохождении через земную атмосферу, что остаются на поверхности Земли или проникают в почву лишь на незначительную глубину.

Наибольшей известностью пользуется метеоритный кратер Берринджер близ Уинслоу в шт. Аризона (США). Его диаметр 1200 м, а глубина 175 м. Кольцевой вал поднимается на 35 м над окружающей кратер пустыней. На поверхности Земли в самых различных ее районах обнаружены сотни метеоритных кратеров. Их происхождение от удара метеоритов точно доказано находками метеоритных осколков.

Существуют и такие кратеры, возникновение которых в результате метеоритного удара не вызывает сомнения, хотя в их окрестностях и не обнаружены осколки метеоритного вещества. Есть и третья группа кратероподобных углублений, относительно генезиса которых мнения расходятся. Так, например, обстоит дело с более чем 20-километровым Нёрдлингенским бассейном, располагающимся между Швабской и Франконской Альбой (Юрой) в Германия. По мнению одних, этот бассейн возник по разлому, образованному в земной коре вулканическими газами. Но другие видят в нем метеоритный кратер. Находка там минерала коэсита, образующегося при высоких давлениях, свидетельствует в пользу метеоритного происхождения этой впадины.

Гигантские метеориты падают на Землю и в наше время. Подобный метеорит упал 30 июля 1908 г. в Сибири. На месте падения этого так называемого Тунгусского метеорита возникли многочисленные кратеры диаметром до 50 м, тайга в окружности около 60 км оказалась поваленной. 17 апреля 1930 г. метеорит массой 370 кг упал вблизи г. Парагул (шт. Арканзас, США).

12 апреля 1947 г. крупный метеорит упал у Владивостока. На площади в несколько квадратных километров он оставил 106 кратеров, самый большой из которых имел в диаметре 28 м при глубине 6 м.

Все метеориты имеют приблизительно тот же качественный химический состав, что и породы Земли. Однако количественное соотношение элементов в них более соответствует глубинным частям нашей планеты, нежели земной коре. В частности, легкие элементы, такие как кислород, кремний и алюминий, уступают по содержанию в метеоритах более тяжелым, например железу и никелю.

По частоте встречаемости в метеоритах преобладает железо, за ним следуют кислород, кремний, магний, никель, сера, кальций и алюминий. По составу и структуре различают железные, каменные типы метеоритов и стекловидные тектиты.

Железные метеориты (сидериты) (1, 2) состоят по преимуществу из никелистого железа с незначительнбй примесью кобальта и меди. Сплав подобного состава в рудах земного происхождения почти не встречается. Метеориты, состоящие из железа, содержащего 6-7% никеля и кристаллизующегося в кубической сингонии (со спайностью по кубу), называются гексаэдритами. На приполированной поверхности таких метеоритов, протравленной азотной кислотой, можно видеть тонкую штриховку (линии Неймана).

При более высоком содержании никеля (иногда до 50%) метеоритное вещество кристаллизуется в виде октаэдров. После полировки и травления в них можно обнаружить пластинчатое строение: две системы тонких пластин, пересекающихся почти под прямым углом, так называемые видманштеттовы фигуры. Среди этих фигур различают три самостоятельные фазы: темно-серую, содержащую 6-7% никеля, - камасит, который образует на срезе полосы в несколько миллиметров шириной; окаймляющее их блестящее, как серебро, богатое никелем метеоритное железо - тэнит и серовато-черное метеоритное железо, заполняющее промежутки между пластинками, - плессит (тонкая смесь камасита и тэнита). Метеориты, имеющие подобную структуру, называются октаэдритами.

Помимо этого существуют метеориты со структурой, напоминающей микроструктуру стали, - атакситы, в которых нельзя различить ни неймановых линий, ни видманштеттовых фигур. Атакситы возникли из октаэдритов в результате их сильного нагревания. Образцы: (1) - протравленный гексаэдрит из шт. Аризона (США), (2) - фрагмент октаэдритового метеорита из Намибии массой 15 т. Отчетливо видны видмаштеттовы фигуры.


Упавший в Приморье (Дальний Восток, РФ) в 1947 г. и раскаловшийся Сихотэ-Алиньский метеорит
имеет массу 23 тонны и состоит на 94% из железа и на 5,5% из никеля (железный метеорит)

12 февраля 1947 г. (XX в.) в Уссурийской тайге (Дальний Восток, РФ, СНГ) произошло падение огромной глыбы метеорита - событие могли наблюдать жители села Бейцухе в Приморском крае РФ (Тихоокеанский регион, Азия): как бывает в случае падения видимого метеорита, свидетели говорили об огромном огненном шаре, за появлением и взрывом которого последовал дождь из железных огарков и обломков, выпавший на территории РФ площадью 35 км 2 . Метеорит пробил в земле ряд видимых воронок, глубина одной из которых составила 6 м, и рассыпал по своей траектории вхождения полета до удара об землю видимые осколки. Раскололся - в космическом пространстве.

Предполагается, что масса разорванного на части Сихотэ-Алиньского метеорита в момент вхождения в атмосферу Земли составляла от 60 т до 100 т: крупнейший из его найденных обломков весит 23 т и считается одним из десяти самых больших метеоритов мира. Есть и еще несколько крупных глыб, образовавшихся в результате взрыва (в космическом пространстве). Метеорит подобрали. Достояние РФ (СНГ) - упал на территорию этого государства.

Метеорит Альенде упал на Землю 8 февраля 1969 г. в мексиканском штате Чиуауа (Центральная Америка) - он считается крупнейшим углистым метеоритом на планете, и в момент падения на Землю его масса составляла порядка 5 т. На сегодняшний день Альенде - достаточно изученный в мире метеорит: его обломки хранятся во многих музеях мира, и примечателен он прежде всего тем, что является самым древним из обнаруженных тел Солнечной Системы, возраст которых удалось установить - ему около 4,567 млрд лет. В его составе впервые был найден неизвестный ранее минерал, получивший название пангит: ученые предполагают, что такой минерал входит в состав множества космических объектов, в частности, астероидов.


Метеорит Гоба, крупнейший железный метеорит массой 60 т, был фрагментом двухтысячетонного тела,
рухнувшего в намибийскую пустыню более 80 млн. лет назад (в кратере формы "кимберлит")

Самым большим цельным метеоритом в мире является метеорит Гоба: он находится в Намибии и представляет собой глыбу весом около 60 т и объемом 9 м3, на 84% состоящую из железа и на 16% - из никеля с небольшой примесью кобальта. Поверхность метеорита - окисленное железо, цельного куска железа природного происхождения таких размеров на Земле нет. Наблюдать падение Гобы на Землю могли динозавры - он упал на нашу планету в доисторические времена и долгое время был погребен под землей, пока в 1920 г. его не обнаружил при вспашке поля фермер. Сейчас объекту присвоен статус национального памятника, и увидеть его за определенную плату может почти любой желающий (за исключением метеоритных воров). Считается, что при падении метеорит весил 90 т, но за тысячелетия пребывания на планете эрозия, вандализм посетителей метеорита и научные исследования послужили причиной уменьшения его массы до 60 т. К сожалению, уникальный объект и сегодня продолжает "худеть" - метеоритные воры считают своим долгом утащить кусочек чужого метеорита на память. Также наблюдается дополнительная атмосферная эрозия - метеорит не защищен от атмосферных и иных осадков.


Современные космические полеты (NASA, США) - в космический аппарат может попасть метеорит


Приведена компьютерная модель космического полета (совр., 2014 г.) в палитрах автора (ПК ЭВМ)
Для интересующихся космическими аппаратами - скачать палитры космолета в авторской отработке

Сегодня многие увесистые "гости из космоса" уже не долетают до земли целыми - в 1970-х XX в. была запущена программа "СОИ" ("Стратегическая Оборонная Инициатива" - "Астероидная опасность", акад. Барабашов, г. Харьков, Украина, СНГ), и орбитальные аппараты и станции начали регистрировать мощные встречные взрывы в атмосфере и стратосфере Земли - до мегатонны в тротиловом эквиваленте (разрушение метеоритов). Подобных событий насчитывалось до десятка в год, но наиболее эффектные из них происходили над океаном (безопаснее).


Структура опаловых халцедонов под электронным микроскопом, конгломерат - силикатных шариков

В среднем пять из шести метеоритов представляют собой конгломерат хондр - силикатных шариков (элементов опалов, сцепленных между собой) около миллиметра в диаметре, соединенных "вакуумной сваркой". Хондры - "катышки" космической пыли (рассыпался опал), твердое вещество Солнечной системы, из которого состоят три четверти астероидов. Под воздействием жесткого излучения молекулы одной пылинки проникают в кристаллическую решетку другой, после чего крошечные тела сливаются воедино. На фото слева - сцементированные опалы.

В составе хондр преобладают кислород, кремний и железо. Но бывают исключения. Очень интересны углистые хондриты, обогащенные углеродом, азотом, фосфором и связанной в силикатах водой. В них обнаруживают сложные соединения, традиционно биогенными - пурины, порфирины, жирные кислоты. Более того, в составе некоторых метеоритов присутствуют так называемые "организованные элементы" - обладающие сложной внутренней структурой цилиндры и сферы размером около сотой доли миллиметра. С одной стороны, ничем, кроме окаменевших микроорганизмов, они быть не могут. С другой - условий для жизни, даже самой неприхотливой и примитивной, на действующих астероидах (обломках космических столкновений и катаклизмов) не было никогда.

17 июня 1908 г. в 07.00 часов по местному времени в районе реки Подкаменной Тунгусски произошел воздушный взрыв мощностью порядка 50-ти мегатонн - такая мощность соответствует взрыву водородной (термоядерной) бомбы с коеффициентом эффективности взрыва около 99,3%.

Взрыв и последовавшая затем ударная взрывная волна (на границе двух сред - земли и атмосферы) зафиксированы обсерваториями во всем мире, деревья на территории 2000 км2 от эпицентра оказались выворочены с корнем, а в домах не осталось ни одного целого стекла. После этого в течение нескольких дней небо и облака в этом районе светились, в том числе и ночью.

Жители рассказывали, что незадолго до взрыва видели летящий по небу огромный огненный шар (удар об верхний слой атмосферы Земли), фотографии не было сделано. Не было обнаружено цельного небесного тела. Первая экспедиция прибыла в район Тунгусски спустя 19 лет после события - в 1927-м году. На фото - современная экспедиция в зону падения Тунгусского метеорита, видны огарки деревьев и следы завала леса. Уран - радиоактивно.

Событие приписывается падению на Землю крупного метеорита, впоследствии получившего название Тунгусского, но ученым не удалось обнаружить цельных обломков небесного тела. В этом месте было зафиксировано скопление микроскопических силикатных и магнетитовых шариков (опалы), которых не могло возникнуть в этой области по естественным причинам, поэтому им приписывается космическое происхождение. Типичный опал космоса (микрофотографии, XX в.). Конгломерат хондр.


Фотографическая модель, имитирующая горение планетарного тела в Солнечной короне (справа)
Моделируется горение планетарных компонентов справа и их температурное растрескивание


Компьютерное искажение - истечение газов и формирование хвоста кометы при приближении к Солнцу
Нагревание и освещение кометы происходит справа (спереди), а истечение газов и атмосферы - слева (сзади)
Посредине проходит терминатор - линия между раскаленной правой и охлажденной левой стороной

Хондрит - непрочная, пористая космическая порода , и лишь тело крупнее 150 м имеет шанс долететь до поверхности планеты. Но 9% метеоритов относятся к классу каменных. Это осколки остывшего лавового магматического базальта и граната оливина - фрагменты планетоидов, достигших диаметра в тысячу километров, а потом погибших в столкновениях с другими телами и друг с другом (космический Катаклизм).

Среди каменных метеоритов попадаются даже осколки лунной или марсианской коры, выброшенные в космос при взаимных столкночениях. Наконец, каждый пятнадцатый метеорит представляет собой обломок металлического ядра расколотого планетоида и целиком состоит из железа с примесью никеля. Отдельную категорию малых тел составляют кометы, в ядрах которых замерзшие газы и водяной лед перемешаны с хондрами и осколками оливина. Но легкие вещества быстро улетучиваются. После нескольких сближений с Солнцем комета теряет "хвост", хондры спекаются космической сваркой. "Останки" древних комет отличаются от астероидов вытянутыми орбитами.


В конце 1960-х XX в. астероид Икар, сманеврировав в сторону Меркурия, опасно вильнул к Земле
На космической фотографии астероида хорошо видны сформированные кратеры и астроблемы

Кратер от проникающего или нет удара метеорита возникает, когда падающее на Землю тело не взрывается сразу (тунгусский метеорит), а врезается в кору планеты на скорости от 11 км/с (если болид "догоняет" Землю, вычитание скоростей небесных тел) до 72 км/с (в случае встречного столкновения, сложение скоростей). При этом "снаряд" частично превращается в плазму и пар, и раскаленные до 15 000 градусов элементы болидного метеорита выбивают воронку в земле. В первые мгновения глубина астроблемы (ударного кратера) может достигать 30% от ее диаметра.

Вал по краям, напоминающий горную цепь, не насыпается, а выдавливается, представляя собой застывшую в камне волну (уравнение Лапласса, краевая задача Коши и цилиндрические функции Бесселя и Неймана) - при огромном давлении даже гранит начинает вести себя как жидкость. Вмятина почти сразу заполняется расплавленной породой и засыпается брекчией - смесью пплавленных тектитов, песка и щебня ("залечивается") и почти не видна. Ищут - расплескивание тектитов. С виду эти кратеры неглубоки, их кривизна описывается функциями Неймана с уходящим вглубь Земли тонким каналом кимберлита. Земля при ударе метеорита ходит волнами - это функции Бесселя.


Ежегодно новые, неизвестные космические скалы проносятся в опасной близости от нашей Земли
Полет ледяной кометы вверху и компьютерная модель полета раскаленной газовой протокометы

Это пара космических замечаний из архива веб-сайта http://www.mirf.ru/ (2013 г.). Оливиновые и железные метеороиды прочнее хондритов, но также могут распадаться при входе в атмосферу. Они зачастую состоят из множества фрагментов, скрепленных лишь газовыми составляющими (углекислота и подобный быстроиспаряющийся лед, как в контейнерах для мороженного). Типа планеты Плутон - самой дальней в Солнечной системе.

Пугают большими локализованными метеоритными кратерами (астроблемами) и высотой цунами после удара метеорита в поверхность земной коры, высота ударной волны (третья сила цунами - XXI в.) которого не зависит от диаметра метеорита и даже его скорости - это последствия нарушений в Земной коре. Пугают извергающимися вулканами, последним днем Помпеи, Везувием, Плинием Старшим и горящей лавой, что также обоснованно. И проигнорировали о. Суматра, 12. 2004 г. (акватория Индийского и Тихого океана, Австралия). Это был удар метеорита с разломом литосферных плит Т-образной формы по типу горстово-сбросовых струкрур до самой магмы - 0,7% нарушений целостности Земли. Метеорит вызвал самое разрушительное цунами в истории водных акваторий и океанов Земли и унес за 1 сутки более 270 000 человеческих жизней. Тонкая земная кора впервые в истории треснула.


Приведена компьютерная модель удара метеорита (совр., 2014 г.) и ее обработка в палитрах (ПК ЭВМ)
Для интересующихся ударами метеоритов - скачать палитры метеорита в авторской отработке

Каменные метеориты (3) более близки по минеральному составу к земным породам, нежели железные. За исключением никелистого железа, их состав сходен с составом перидотитов. Их плотность 3,0-3,5. Оплавленная корочка совершенно черная.

По структуре различают белые до темно-серых зернистые хондриты и более редкие, не имеющие зернистого сложения, -ахондриты. Каменные метеориты встречаются чаще, чем железные. Но из-за их большего сходства с земными породами, на них обращают меньше внимания и реже находят. Переходными типами между желез ными и каменными метеоритами являются палласиты, или сидеролиты, у которых преобладает каменная масса, и мезосидериты, или литосидериты - с преобладающей железной массой. Образец - хондрит, упавший на Землю 3 февраля 1882 г. близ г. Мок, Румыния.

Стекловидные тектиты (4, 5, 6) аморфны и состоят главным образом из SiO, (80%) и Аl2О3 (10%). Их цвет варьирует от черного до бутылочно-зеленого. Возможно, что это и не "космические пришельцы", а вторичные продукты, возникающие при метеоритных ударах. По химическому составу тектиты отличаются как от земных вулканических стекол, так и от других метеоритов. Плотность их составляет около 2,4. Поверхность весьма неровная, испещренная бороздками и бугорками. Подобный рельеф мог явиться результатом природного травления или плавления.

Бутылочно-зеленые разновидности в отшлифованном или в естественном виде еще в прежние времена использовались в украшениях и известны как молдавит, "бутылочный камень". Образцы: (4) - тектит из Европы; (5) и (6) - тектиты из Таиланда.

Молдавит , или бутылочный камень, водяной хризолит, влтавит. Молдавит - единственный используемый в качестве ювелирного камня представитель группы тектитов, называемых также "стеклянными метеоритами". Вероятное происхождение - остатки пород, расплавленных при ударе метеорита.

Особенности состава и распространения тектитов позволяют предполагать их образование из роев космического вещества, возможно остатков ядер комет. Поверхность кусков молдавита скульптурирована, покрыта шрамами; блеск в изломе стеклянный; размер кусков редко превышает 3 см; окраска часто от зеленой и темно-бурой до черной.

Руды и рудные минералы

Обычно рудой называют агрегат минералов с промышленным содержанием какого-либо металла (или металлов). В последнее время, однако, в термин "руда" вкладывают иной смысл, понимая под ним и некоторые неметаллические виды минерального сырья (например, апатитовые или флюоритовые руды). Есть и другие терминологические трудности: в петрографии рудными называют все непрозрачные минералы, главным образом оксиды или сульфиды металлов, в учении же о полезных ископаемых - все те минеральные образования, из которых можно извлекать полезные компоненты. В данном определителе главное место уделено рудным минералам именно в последнем понимании.

Названия руд и рудных минералов очень разнообразны. В них часто находит отражение сам факт присутствия того или иного металла, а также цвет или другие примечательные свойства минерала. Разделение руд на "обманки", блеклые руды, "блески" и "колчеданы" уходит корнями в седую старину, когда названия камням давали сами горняки.

Обманками были названы сульфидные минералы с сильным полуметаллическим или алмазным блеском, как правило, с невысокой твердостью и хорошей спайностью, весьма хрупкие; в тонком сколе они обычно прозрачны. Окраски их могут быть различными. Типичными представителями служат серебряная обманка, или прустит, и цинковая обманка, или сфалерит. Названы по обманчивому внешнему облику, отличному от других рудных минералов.

Блеклые руды - сульфидные минералы с металлическим блеском, низкой твердостью, высокой хрупкостью, без спайности, темно-серого цвета. Типичный представитель их - сурьмяная блеклая руда, или тетраэдрит. Свое название получили по блекло-серой окраске.

"Блески" - сульфидные минералы с сильным металлическим блеском, невысокой твердостью и обычно с хорошей спайностью, непрозрачные. Окраска их темная, вплоть до черной. Типичные представители: свинцовый блеск, или галенит, и сурьмяной блеск, или антимонит. Свое название получили за сильный блеск на плоскостях спайности. В виде исключения к блескам отнесена и блестящая разновидность оксида железа - гематита - железный блеск.

Колчеданы - сульфидные минералы с металлическим блеском и высокой твердостью; отчетливой спайности, как правило, не имеют, непрозрачны. Цвета их обычно более светлые - белые, серые, желтые, розоватые. Типичные представители: серный, или железный, колчедан - пирит и красный никелевый колчедан - никелин. Их немецкое название Kiese ("кизе") скорее всего связано с тем, что по твердости они приближаются к кремню, называющемуся Kieselstein ("кизельштайн") (подобно кремню, они служили кресалом в огнестрельном оружии).

Классификация. В технике, промышленности и экономике руды классифицируются преимущественно по содержащимся в них главным металлам, в минералогии рудные минералы - по классам химических соединений.

Рудные месторождения. Для большинства полезных металлов характерно их низкое содержание в земной коре, и при равномерном распределении (рассеянии) они недоступны для извлечения. Лишь благодаря их способности концентрироваться в определенных условиях становится возможной промышленная добыча руд этих металлов. Подобные места скопления металлических или других ценных руд называют рудными месторождениями. По происхождению различают магматогенные, осадочные и метаморфогенные месторождения. Магматогенные месторождения - это скопления минералов, возникающие в связи с процессами затвердевания магматического расплава. Кристаллизация первично гомогенной магмы и отделение от нее рудного вещества могут происходить постепенно, при различных температурах; поэтому различают три главные группы магматогенных рудных месторождений.

Собственно магматические (ликвационные) месторождения формируются на начальной стадии затвердевания. В интервале температур от 1200 o С до 550 o С вследствие магматической дифференциации выделяются руды, содержащие самородные металлы (железо, платину), оксиды (магнетит) и сульфиды (пирротин). Ликвационно-магматические месторождения известны в Печенге (Кольский п-ов, СНГ), в Норильске (Сибирь, СНГ), в Таберге и Кируне (Швеция), в Садбери (пров. Онтарио, Канада) и в Зимбабве.

Пегматитовые и пневматолитовые месторождения возникают при участии паров и растворов, содержащих легко летучие соединения металлов и образующихся в конце процесса затвердевания магмы при кристаллизации остаточного расплава в диапазоне температур от 500 o С до 370 o С. К ним принадлежат редкометальные (литиевые, бериллиевые, танталовые) и мусковитовые пегматиты, месторождения молибдена, вольфрама, олова, висмута, отчасти золота и меди.

Гидротермальные месторождения образуются при температурах ниже 374 o С (критическая температура воды при нормальном давлении) из испаряющихся и охлаждающихся водных растворов. К ним относятся месторождения свинца и цинка, золота и серебра, меди и кобальта, ртути, сурьмы и мышьяка. Такие месторождения бывают приурочены к трещинам и пустотам во вмещающих породах за пределами интрузивных массивов. Так, жильные сидеритовые руды Зигерланда (земля Северный Рейн-Вестфалия, Германия) имеют гидротермально-метасоматическое происхождение.

В процессе гидротермального минералообразования происходит частичное замещение (метасоматоз) относительно легко растворимых боковых пород, в частности карбонатных, - особенно известняков, реже доломитов; пористые породы пропитываются рудной минерализацией (импрегнация) с образованием вкрапленных руд. Метасоматическим путем возникло крупнейшее колчеданно-полиметаллическое (свинцово-цинковое) месторождение мира - Брокен-Хилл в Австралии. Месторождения вкрапленных руд, особенно медных, несмотря на низкие содержания металла, являются промышленными благодаря их крупным масштабам. За счет подводных вулканических эксгаляций (выделения вулканических паров и газов) образуются подводно-морские вулканогенно-осадочные месторождения, например месторождение красных железняков района Лан и Диль (земля Гессен, Германия).

Осадочные месторождения формируются при процессах выветривания горных пород, протекающих при участии воды или за счет химических преобразований, в особых климатических условиях. Область температур осадочного рудообразования - от точки замерзания воды до -50 o С. Рудные тела, выходящие на дневную поверхность, подвергаются выветриванию. Выше уровня грунтовых вод образуется зона окисления, сильно обогащенная железом и обедненная благородными металлами, которую горняки называют "железной шляпой". Руды "железной шляпы" имеют корродированную поверхность и темно-бурую до черной окраску. С них, как правило, и начиналась разработка месторождений.

Просачивающиеся воды, растворяя первичные рудные минералы в зоне окисления, переносят ионы металлов глубже, подчас достигая уровня грунтовых вод, где формируется так называемая зона цементации, обогащенная сульфидными рудами, особенно рудами меди и серебра.

В добыче благородных металлов (как и драгоценных камней) большую роль играют россыпи - скопления минералов в песчано-галечных отложениях. Под воздействием текучей воды и ветра самородные металлы благодаря устойчивости к выветриванию и высокой плотности накапливаются в россыпных месторождениях. По полезному минералу различают хромитовые, золотые, ильменитовые, магнетитовые и платиновые россыпи. Золотые россыпи на Рейне, на Дунае, по рекам Изар, Эдер и Зааль были выработаны уже в прошлом веке. Крупнейшие золотые месторождения Витватерсранда, близ Иоганнесбурга (ЮАР), представляют собой метаморфизованные россыпи (конгломераты), возникшие на ранних этапах геологической истории (в протерозое). В Австралии, Индии, Намибии, Бразилии и в США (шт. Флорида) имеются прибрежно-морские россыпи, образовавшиеся в результате деятельности прибоя и морских течений; россыпные месторождения обломочных руд района Пейне-Ильзеде (земля Нижняя Саксония, Германия) возникли в зоне прибоя мелового моря.

Бокситы, бобовые руды и коры выветривания, сложенные оксидами железа и марганца, то есть остаточные месторождения выветривания, возникли в специфических климатических условиях при процессах литеритного выветривания на континентах. Они образуют покровы или выполняют полости и "карманы" в карбонатных породах.

Оолитовые железные руды имеют морское происхождение. Железо, перенесенное с материка в растворенной форме, отлагается в виде гидроксидов концентрическими слоями вокруг ядер оолитов, образуя шарики от 0,5 мм в диаметре до величины горошины. Наиболее известные представители оолитовых руд - минетты Лотарингии и Люксембурга. Другие месторождения этого типа находятся в шт. Алабама (США) и на п-ове Ньюфаундленд (Канада). Оолитовые марганцевые руды добываются на Кавказе и на Украине (СНГ). Мансфельдские медистые сланцы (Гарц, Германия) также возникли в морских условиях путем осаждения солей тяжелых металлов. Существуют, наконец, железистые образования (например, болотные железные руды), возникающие при участии органических веществ и бактерий. В количественном отношении они не играют ведущей роли.

Метаморфогенные месторождения формируются путем преобразования (метаморфизма) магматических или осадочных рудных месторождений. При метаморфизме меняются как первоначальный минеральный состав (вследствие новообразований, растворения и собирательной перекристаллизации), так и структурно-текстурные особенности руд. Такое происхождение имеют месторождения меди Оутокумпу в восточной части Финляндии, скарновые руды Швеции, железорудные залежи на Украине (СНГ), итабиритовые железные руды Бразилии и таконитовые района озера Верхнее (США, Канада), отчасти также богатые серебром свинцово-цинковые месторождения Брокен-Хилл в Австралии.

Промышленная значимость рудного месторождения зависит от многих факторов, в том числе от вещественного состава руд, их общих запасов, удобства разработки, обогатимости, транспортных условий, размера необходимых капиталовложений и рыночной конъюнктуры или потребности в данном виде сырья. Ценность месторождений с течением времени меняется. Так, сегодня с появлением новых методов обогащения руд становится возможной частичная переработка старых отвалов.

Поиски и разведка месторождений проводились прежде путем изучения поверхности, проходки шурфов, штолен и бурения скважин. Современные методы позволяют более точно оконтурить рудное тело и тем самым дать ему более достоверную промышленную оценку.

В зависимости от способа образования, характера напластования и структурно-текстурных особенностей вмещающих пород рудные тела могут иметь самые разнообразные формы. Так, пластообразными называют рудные тела, первоначально имевшие горизонтальное залегание. Их происхождение обычно осадочное. Горообразовательные процессы часто нарушают и изменяют их залегание. Большое значение в горнодобывающей промышленности имеют также рудные жилы. Они представляют собой выполнения трещин (преимущественно тектонического происхождения) ликвационно-магматическими, пегматитовыми, пневматолитовыми и гидротермальными рудами или другими минеральными агрегатами. Соответственно жильное выполнение всегда моложе вмещающих пород. Трещины, заполненные жильным веществом, образуются под воздействием процессов растяжения в земной коре и потому имеют в основном крутое залегание; пологие жилы встречаются редко. Залежами преимущественно называют сильно вытянутые линзы переменной мощности, залегающие во вмещающих породах. Весьма часто рудные тела имеют неправильную форму.

В современных условиях важной задачей эксплуатации месторождении является комплексное использование их руд с извлечением всех содержащихся в них полезных компонентов (минералов и металлов). Это, однако, сопряжено со значительными трудностями. Из добытой сырой руды вначале путем обогащения получают рудные концентраты, которые затем могут служить сырьем для металлургической переработки.

На фото - кимберлитовые тектиты (оплавленные породы карьерных руд). Бежевый модификат пегматита, демантоидный зеленый и сероватый агатовый оплавленный кимберлитовый тектит из карьерной выработки (результат удара и ввинчивания в землю раскаленного вращающегося болидного метеорита с вращением пород - оплавленные породы кимберлита). Остеклованные камни из карьеров.

В настоящее время в СНГ исключительно важное значение придается проблеме комплексного освоения месторождений и комплексного использования руд. Ставится задача возможно более полного извлечения из руд не только основных, но и попутных полезных компонентов - ценных элементов-примесей, особенно редкометальных.

С этой целью разрабатываются и совершенствуются методы обогащения руд и технологии химико-металлургического передела минерального сырья. Повышение полноты и комплексности использования руд на действующих горнообогатительных предприятиях в ряде случаев равноценно открытию и освоению новых месторождений. Показанные на фото остеклованные кимберлитовые тектиты - признак богатейших урановых и других редкометальных месторождений, кимберлитовых трубок, практически невидимых на поверхности Земли (тектиты из кимберлитовых карьеров).

Эти оплавленные и остеклованные (кварцевые) метаморфизированные в результате удара и прохода раскаленного метеоритного болида сквозь толщи земной коры камни (имеют кварцевые составляющие) - признак максимальной близости к ним кимберлитового жерла - отверстия кимберлитовой трубки в земной коре, через которую сквозь земную кору наподобие смерча походит раскаленный горящий метеорит (болид), вовлекает окружающие его породы во вращение и локально оплавляет их высокой температурой (кимберлитовый болидный метаморфит - метаморфические породы земной коры контактового ореола кимберлитового болидного метеорита). Третий вид тектитов и метаморфических горных пород.

Названия тектитам даются по их месторождению: молдавит - по р. Влтава, Молдава, в Чехословакии, австралит - из Австралии: джорджиаит - из штата Джорджия, США. Данные околометеоритные кимберлитовые цветные тектиты (модифицированный пегматит - письменный гранит, зеленый демантоид, золотисто-зеленый хризолит с пегматитом, огнеупорный черный морионовый тектит, почти не оплавленный, и агатоподободная серая форма) подобраны в г. Харькове (Украина) - харьковиты (Харьковские камни).

В современных условиях, когда при эксплуатации месторождений полезных ископаемых из недр извлекаются огромные объемы горной массы, с особой серьезностью следует отнестись к проблеме утилизации породообразующих минералов и самих вмещающих пород, в том числе старых рудничных отвалов и хвостов обогащения. Нельзя не упомянуть и о проблеме рекультивации земель в пределах отводов горных предприятий после отработки месторождений. Эта проблема, имеющая серьезное экологическое значение, особенно остро встает в густонаселенных районах, таких как Донбасс.

  • Метаморфические породы (метаморфиты) - гнейсы, сланцы, мраморы, известняки, кимберлитовые тектиты
  • Метеориты и руды , рудные минералы и добыча полезных ископаемых
  • Мировая добыча драгоценных камней и самоцветов, месторождения
  • Метеориты состоят из тех же химических элементов, которые имеются и на Земле.

    В основном это 8 элементов: железо, никель, магний, сера, алюминий, кремний, кальций, кислород . Встречаются в метеоритах и другие элементы, но в очень малых количествах. Составляющие элементы взаимодействуют между собой, образуя в метеоритах различные минералы. Большинство из них также присутствует на Земле. Но бывают метеориты с неизвестными на земле минералами.
    Метеориты по составу классифицируют следующим образом:
    каменные (большинство из них хондриты , т.к. содержат хондры - сферические или эллиптические образования преимущественно силикатного состава);
    железо-каменные ;
    железные .


    Железные метеориты почти полностью состоят из железа в соединении с никелем и незначительным количеством кобальта.
    Каменистые метеориты содержат силикаты – минералы, представляющие собой соединение кремния с кислородом и примесью алюминия, кальция и других элементов. В каменных метеоритах встречается никелистое железо в виде зернышек в массе метеорита. Железо-каменные метеориты состоят в основном из равных количеств каменистого вещества и никелистого железа.
    В разных местах Земли обнаружены тектиты – стеклянные куски небольшого размера в несколько граммов. Но уже доказано, что тектиты – это застывшее земное вещество, выброшенное при образовании метеоритных кратеров.
    Учеными доказано, что метеориты являются обломками астероидов (малых планет). Они сталкиваются между собой и дробятся на более мелкие осколки. Эти осколки и падают на Землю в виде метеоритов.

    Для чего изучают состав метеоритов?

    Это изучение дает представление о составе, структуре и физических свойствах других небесных тел: астероидов, спутников планет и т.д.
    В метеоритах обнаружены и следы внеземной органики. Углеродосодержащие (углистые) метеориты имеют одну важную особенность - наличие тонкой стекловидной коры, образовавшейся, по-видимому, под воздействием высоких температур. Эта кора является хорошим теплоизолятором, благодаря чему внутри углистых метеоритов сохраняются минералы, не выносящие сильного нагрева - например, гипс. Что это значит? Это значит, что при исследовании химической природы подобных метеоритов в их составе обнаружены вещества, которые в современных земных условиях являются органическими соединениями, имеющими биогенную природу. Хотелось бы надеяться, что этот факт говорит о существовании жизни вне Земли. Но, к сожалению, однозначно и с уверенностью говорить об этом невозможно, т.к. теоретически эти вещества могли быть синтезированы и абиогенно. Хотя можно допустить, что если обнаруженные в метеоритах вещества и не являются продуктами жизни, то они могут быть продуктами преджизни - подобной той, какая существовала некогда на Земле.
    При исследовании каменных метеоритов обнаруживаются даже так называемые «организованные элементы» - микроскопические (5-50 мкм) «одноклеточные» образования, часто имеющие явно выраженные двойные стенки, поры, шипы и т.
    Падение метеоритов предсказать невозможно. Поэтому неизвестно, где и когда метеорит упадет. По этой причине лишь малая часть упавших на Землю метеоритов попадает в руки исследователей. Лишь 1/3 часть упавших метеоритов наблюдалась при падении. Остальные – случайные находки. Из них больше всех железные, так как они дольше сохраняются. Расскажем об одном из них.

    Сихотэ-Алинский метеорит

    Он упал в Уссурийской тайге в горах Сихотэ-Алинь на Дальнем Востоке 12 февраля 1947 года в 10 часов 38 минут, раздробился в атмосфере и выпал железным дождем на площади 35 квадратных километров. Части дождя рассеялись по тайге на площади в виде эллипса с осью длиной около 10 километров. В головной части эллипса (кратерном поле) было обнаружено 106 воронок, диаметром от 1 до 28 метров, глубина самой большой воронки достигала 6 метров.
    По химическим анализам, Сихотэ-Алинский метеорит относится к железным: состоит из 94 % железа, 5,5 % никеля, 0,38 % кобальта и небольших количеств углерода, хлора, фосфора и серы.
    Первыми место падения метеорита обнаружили лётчики Дальневосточного геологического управления, которые возвращались с задания.
    В апреле 1947 года для изучения падения и сбора всех частей метеорита Комитетом по метеоритам Академии Наук СССР была организована экспедиция под руководством академика В. Г. Фесенкова.
    Сейчас этот метеорит находится в метеоритной коллекции Российской академии наук.

    Как узнать метеорит?

    Практически большинство метеоритов находят случайно. Как же можно определить, что то, что вы нашли, - является метеоритом? Вот простейшие признаки метеоритов.
    У них большая плотность. Они тяжелее, чем гранит или осадочные породы.
    На поверхности метеоритов часто видны сглаженные углубления, как будто вмятины пальцев на глине.
    Иногда метеорит похож на затупленную головку снаряда.
    На свежих метеоритах видна тонкая кора плавления (около 1 мм).
    Излом метеорита чаще всего бывает серого цвета, на котором иногда заметны маленькие шарики – хондры.
    У большинства метеоритов видны на разрезе вкрапления железа.
    Метеориты намагничены, стрелка компаса заметно отклоняется.
    С течением времени метеориты окисляются на воздухе, приобретая ржавый цвет

    КАМЕННЫЕ МЕТЕОРИТЫ, класс метеоритов, состоящих в основном из железомагнезиальных силикатов (оливин, пироксены и плагиоклазы). В составе каменных метеоритов могут присутствовать: никелистое железо, хромит, филлосиликаты (слоистые силикаты), сульфиды, фосфаты и карбонаты. По структуре, минеральному, химическому и изотопному составу вещества среди каменных метеоритов различают: хондриты и ахондриты.

    Хондриты в мелкозернистой минеральной массе метеорита, называемой матрицей, содержат хондры (от греческого χόνδρος - зерно) - сферические частицы размером преимущественно до 1 мм, часто микропорфировой структуры (бронзит, оливин, иногда стекловатая масса), которые образовались при плавлении силикатной пыли в протопланетном облаке, окружавшем Солнце. Хондриты по соотношению хондр и матрицы, а также особенностям минерального, химического и изотопного составов подразделяют на углистые (С), обыкновенные (О) и энстатитовые (Е).

    Углистые хондриты (С) отличаются преобладанием матрицы над хондрами, а также повышенным содержанием летучих элементов, в том числе углерода; по элементному химическому составу близки к составу Солнца (без учёта содержаний водорода и гелия). Углистые хондриты считаются самыми «примитивными» и могут содержать первичное вещество Солнечной системы в виде сконденсированных из околосолнечного газа зёрен минералов: корунда, мелилита, гибонита, гроссита и шпинели. По соотношению хондр и матрицы, содержанию филлосиликатов и никелистого железа, химическому и изотопному составу выделяют 8 типов углистых хондритов (CI, СМ, СО, CV, СК, CR, СН, СВ).

    В структуре обыкновенных хондритов (О) явно преобладают хондры. Эту наиболее распространённую группу хондритов по содержанию общего количества железа (никелистое + силикатное) и величине отношения железа к сумме железа и магния в силикатах разделяют на 3 подгруппы (Н, L и LL).

    Энстатитовые хондриты (Е), отличающиеся резким преобладанием энстатита в минеральном составе, по общему содержанию железа (никелистое железо + железо в силикатах) разделяют на 2 подгруппы (ЕН и EL).

    Помимо основных групп хондритов (С, О, Е), выявлены редкие хондриты К- и R- типов, со специфическим изотопным составом кислорода и редких газов (аргон, ксенон и др.), а также рядом особенностей химического состава.

    Для хондритов разработана петрологическая классификация - по степени перекристаллизации минералов (в результате термального метаморфизма внутри родительского тела астероида), количеству водосодержащих слоистых силикатов, ударных преобразований и степени земного выветривания хондриты делятся на 7 петрологических типов, 6 ударных стадий и 6 стадий выветривания.

    Ахондриты не содержат хондр и представляют собой полнокристаллические магматические породы. По степени дифференцированности вещества материнского космического тела различают примитивные и дифференцированные ахондриты.

    Примитивные ахондриты (акапулькоиты, лодраниты, брачиниты и уреилиты) по химическому составу близки к хондритам, образовались на начальной стадии дифференциации космических тел хондритового состава.

    Дифференцированные ахондриты (обриты, ангриты, эвкриты, диогениты, говардиты, лунные и марсианские метеориты) образовались в недрах материнских тел, в которых произошло полное плавление вещества, а также разделение металлического и силикатного расплавов, и последовательная кристаллизация силикатного расплава - магматическая дифференциация. Для части дифференцированных ахондритов идентифицированы материнские тела. Лунные метеориты (представлены в основном реголитовыми брекчиями, содержащими обломки базальтов, габбро, анортозитов и стекло ударного происхождения) по составу соответствуют образцам лунных пород, доставленным на Землю автоматическими станциями серии «Луна» (Россия) и экспедициями «Аполлон» (США). Марсианскими метеоритами считаются шерготтиты (базальты), наклиты (клинопироксениты) и шассиньиты (дуниты). Предполагается, что это обломки коры и мантии большой планеты, вероятнее всего Марса, выброшенные в космос из кратеров, образующихся при падениях на планету крупных метеоритов.

    Из общего количества найденных метеоритов около 92,7% приходится на каменные метеориты. Известно около 1000 каменных метеоритов, обнаруженных непосредственно после падения (так называемых падений), и свыше 20 500 - без привязки к дате и месту падения (так называемых находок). Из найденных каменных метеоритов крупнейший в мире - обыкновенный хондрит Jilin (Китай, 1976), масса 4 тонны; в России - обыкновенный хондрит Царёв (Волгоградская область, 1968), масса свыше 1,1 т. Крупнейший ахондрит - обрит Al Haggounia 001 (Западная Сахара, 2006), масса 3 тонны; в России - обрит Старое Песьяное (Курганская область, 1933), масса 3,4 кг.

    М. А. Иванова, К. А. Лоренц.

    27% от всех метеоритов, хранящихся в собраниях, это железные (формально их называют сидеритами), но, согласно статистике находок в Антарктиде, они составляют только 6% от числа падений. Это объясняется тем фактом, что они разрушаются гораздо медленнее, чем другие метеориты и тем, они гораздо заметнее и их легче найти.

    Крупнейшие известные метеориты это железные. Наибольший их всех находится в месте падения в Гоба, Намибия. Он был открыт в 1920г. и его вес оценивается в 70 тонн. Второй по тяжести метеорит находится в Музее Естественной истории а Нью-Йорке. Он был найден в Кейп-Йорке, Гренландия, и доставлен на корабле в конце XIX века, его вес 59 тонн.

    Существует большое разнообразие среди железных метеоритов и всегда было трудно классифицировать их. В действительности они делятся на 13 групп (IAB, IC, IIAB, IIC и т.д.) согласно их химическому составу, особое внимание уделяют количеству галлия, германия и иридия, содержащихся в составе метеоритов в сотых долях процента.

    Химический и статистический анализы показывают характерные структуры распределения, что позволяет нам классифицировать эти метеориты. Однако и сейчас 25% из них определяются как «аномальные», так как они не подходят к уже известным структурам распределения.
    Железные метеориты также классифицируются согласно их внутренней структуре или по содержанию никеля. Было установлено, что не железные метеориты содержат менее 5% никеля. Установлено, что железные метеориты состоят из смеси двух различных минералов с одинаковой химической формулой (Fe, Ni), но различными структурами - камасита и таэнита. Преобладание одного или другого минерала зависит от условий охлаждения и процента содержания никеля.

    • Октаэдриты

      они имеют 8-стороннюю структуру и содержат от 7 до 15% никеля. Травление полированной поверхности пластинки метеориты раствором азотной кислоты проявляет рисунок структуры октаэдрита, состоящей из полос камасита в 4-х плоскостях, пересекающих одна другую под углом 60º, четвёртая плоскость параллельна поверхности. Эти плоскости ограничена таэнитом и пространство между ними заполнено микрокристаллической смесью этих минералов, названной плесситом, они образуют Видманштеттеновы фигуры, получившиеся в результате остывания этого железо-никелевого сплава. Система линий, пересекающих друг друга параллельно двум, трём и более осям, изменяется в зависимости от угла рассматриваемой поверхности кристаллизации.

      Со времён изучения Чермака известно 6 подгрупп, базирующихся на ширине линий камасита, потому что существует прямая зависимость между этой шириной и содержанием никеля. Эти подгруппы кодируются как Ogg, Og, Om, Of, Off, Opl (от «очень грубая структура» до «очень тонкая»).

    • Атакситы

      их структура не видна невооруженным взглядом (отчего они так и названы), потому что ширина Видманштеттеновых фигур уменьшается тем сильнее, чем больше в метеорите никеля и они совершенно исчезают когда его содержание превышает 15%. Количество никеля может достигать 60%.

    • Гексаэдриты

      они содержат 5-6% никеля, соединяются в большие гексаэдры (кубы) камасита. Они даже могут быть просто одним кристаллом (кубом), разрушенным после удара. Если поверхность куба обработать азотной кислотой, можно получить рисунок параллельных полос, Нейманновых линий. Они были сформированы давлением и нагрузкой на камасит температур в пределах от 300ºС до 600ºС. И если образец состоит из нескольких кристаллов, то ориентация линий будет различной на каждом из них.

    Девять признаков настоящего внеземного пришельца

    Чтобы знать, как определить метеорит, для начала вы должны знать типы метеоритов. Существуют три основных вида метеоритов: каменные метеориты, железные метеориты и железокаменные метеориты. Как ясно из названия, железокаменные метеориты обычно состоят из смеси железа и силикатных минералов в соотношении 50/50. Это очень редкий тип метеоритов, он составляет около 1-5% всех метеоритов. Определить такие метеориты бывает очень непросто. Они напоминают металлическую губку, в порах которой находится силикатное вещество. На Земле нет пород, схожих по строению с железокаменными метеоритами. Железные метеориты составляют около 5% всех известных метеоритов. Это – монолитный кусок сплава железа и никеля. Каменные метеориты (обыкновенные хондриты) составляют большинство, от 80% до 95% всех метеоритов, которые падают на землю. Они называются хондрита- ми из-за малых сферических минеральных включений, называемых хондрами. Эти минералы образуются в вакуумной среде при нулевой гравитации пространстве, поэтому они всегда имеют форму сферы. Признаки метеорита Понятно, что железный метеорит опознать проще всего, а каменный – труднее всего. Распознать наверняка каменный метеорит сможет лишь высококвалифицированный специалист. Однако и простой человек может понять, что перед ним пришелец из космоса по простейшим признакам метеорита:

    1. Метеориты тяжелее земных камней. Вызвано это большей плотностью, которой обладают метеориты, по сравнению с земными породами.

    2. 2. Присутствие сглаженных углублений, похожих на вмятины пальцев на пластилине или глине – так называемые регмаглипты. Эти выемки, хребты, ковши, и впадины на поверхности метеорита, которые образуются в процессе, называемом абляцией. Это происходит в тот момент, когда метеороид проходит через нашу атмосферу. При очень высоких температурах, начинают плавиться менее плотные слои с поверхности камня, и это создает округлые вдавленные выемки.

    3. Иногда метеорит имеет ориентированную форму и напоминает головку снаряда.

    4. Если метеорит упал не слишком давно, то на его поверхности наверняка будет кора плавления – темная тонкая оболочка толщиной около 1 мм. Как правило, эта темная черная кора плавления очень похожа с внешней стороны на уголь, но если метеорит каменного типа, то он обычно имеет светлую внутреннюю часть, которая выглядит так же, как бетон.

    5. Излом метеорита зачастую серый, на нем иногда видны маленькие шарики, размером около 1 мм – хондры.

    6. Почти у всех небесных странников на пришлифованном разрезе можно заметить вкрапления металлического железа.

    7. Метеориты намагничены, и стрелка компаса рядом с ними отклоняется.

    8. Со временем метеорит изменяет свой цвет, который становится бурым, ржавым. Это вызвано реакцией окисления.

    9. У метеоритов, которые относят к железному классу, на полированном и протравленном кислотой разрезе, зачастую можно увидеть крупные кристаллы металла – видманштеттеновы фигуры.


    © 2024
    artistexpo.ru - Про дарение имущества и имущественных прав