22.09.2019

Использование ГИС-технологий в региональных и локальных экологических исследованиях (на примере Калужской обл.). ГИС в экологии. Какие основные аналитические возможности обычно присутствуют в современных ГИС


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    История создания географических информационных систем, их классификация и функции. Сущность геохимической оценки техногенных аномалий. Применение геоинформационной системы ArcView 9 для оценки загрязнения тяжелыми металлами атмосферного воздуха г. Ялты.

    дипломная работа , добавлен 19.12.2012

    Информационное обеспечение экологических исследований. Структура и особенности экспертной системы. Преимущества геоинформационных систем. Модели в "математической экологии". Системы получения данных. Объединение различных информационных технологий.

    реферат , добавлен 11.12.2014

    Особенности экологии района: основные проблемы Челябинской области в сфере экологии, влияние промышленных предприятий на экологию, пути и методы решения экологических проблем. Усовершенствование технологий по очистке природной среды от отходов.

    доклад , добавлен 15.07.2008

    Основные виды хроматографии. Применение хроматографических методов в экологическом мониторинге. Применение хроматографии в анализе объектов окружающей среды. Современное аппаратурное оформление. Методы проявления хроматограмм и работа хроматографа.

    курсовая работа , добавлен 08.01.2010

    Использование геоинформационных систем для создания карт основных параметров окружающей среды в нефтегазовой отрасли с целью выявления масштабов и темпов деградации флоры и фауны. Базовые основы системы мониторинга и комплексной оценки природной среды.

    курсовая работа , добавлен 27.02.2011

    Понятие мониторинга загрязнения вредными веществами, его цели и задачи, классификация. Институты регионального мониторинга состояния экологии. Построение системы регионального наблюдения в Республике Беларусь. Некоторые результаты стационарных наблюдений.

    реферат , добавлен 30.05.2015

    презентация , добавлен 27.11.2015

    Общая характеристика загрязнений естественного и антропогенного происхождения, физические, химические и биологические загрязнения природной среды. Последствия загрязнения и неблагоприятное изменение нашего окружения, контроль и ликвидация отходов.

    В управлении землепользованием и в ведении городского хозяйства одним из основных видов продукции является информация (в том чис­ле картографическая), получаемая на основе имеющихся данных. При решении экологических задач с помощью ГИС акцент на продукцию несколько иной. В ходе экологического наблюдения (мониторинга) осу­ществляют сбор и совместную обработку данных, относящихся к раз­личным природным средам, моделирование и анализ экологических про­цессов и тенденций их развития, а также использование данных при при­нятии решений по управлению качеством окружающей среды.

    Результат экологического исследования, как правило, представляет оперативные данные трех типов:констатирующие (измеренные пара­метры состояния экологической обстановки в момент обследования), оценочные (результаты обработки измерений и получение на этой ос­нове оценок экологической ситуации),прогнозные (прогнозирующие развитие обстановки на заданный период времени).

    Из этого следует, что в экологических ГИС применяются в первую очередь динамические модели. В силу этого большую роль в них игра­ют технологии создания электронных карт.

    Совокупность всех перечисленных трех типов данных составляет основу экологического мониторинга.

    Особенностью представления данных в системах экологического мониторинга является то, что на экологических картах в большей степе­ни представлены ареальные геообъекты, чем линейные.

    Относительно цифрового моделирования принципиальным следует считать использование цифровых моделей типа цифровая модель явле­ния, поле и т.п.

    На уровне сбора наряду с топографическими характеристиками дополнительно определяются параметры, характеризующие экологичес­кую обстановку. Это увеличивает объем атрибутивных данных в эколо­гических ГИС по сравнению с типовыми ГИС. Соответственно возрас­тает роль семантического моделирования.

    На уровне моделирования используют специальные методы расчета параметров, характеризующих экологическое состояние среды и определяющих форму представления цифровых карт.

    На уровне представления при экологических исследованиях осуществляют выдачу не одной, а, как правило, серии карт, особенно при прогнозировании явлений. В некоторых случаях карты выдаются с применением методов динамической визуализации, что довольно часто можно наблюдать при метеопрогнозах, показываемых по телевидению.

    В качестве примера рассмотрим систему экологического монито­ринга, создаваемую для Москвы". Объектами мониторинга Москвы яв­ляются: атмосферный воздух, поверхностные и подземные воды, почва, зеленые насаждения, радиационная обстановка, среда обитания и со­стояние здоровья населения.

    Большое число организаций (федеральных, муниципальных, ведом­ственных) в Москве занимаются независимо друг от друга сбором дан­ных о состоянии параметров объектов окружающей среды. Производится контроль состава атмосферного воздуха, количества выбросов промыш­ленных предприятий и автотранспорта, качества поверхностных и под­земных вод и т. д. Эти работы выполняют различные организации - от ГАИ до санэпидемстанций. Недостатки существующего порядка сбора экологических данных - разрозненность и бессистемность, ра­зобщенность городских природоохранных организаций и отсутствие ком­плексных оценок и прогнозов развития экологической обстановки.

    Главная задача городского экомониторинга - получение комплекс­ной оценки экологической ситуации в городе на базе интеграции всех видов данных, поступающих от различных организаций. Интеграцион­ной основой множества данных, естественно, является карта. Следова­тельно, решение задач экомониторинга города неизбежно приводит к созданию и применению ГИС.

    (‘Пупырев Е.И., Бутаков П.Д., Дронина Н.П. Роль и место геоинформаци­онных технологий в системе экомониторинга Москвы // ГИС - Обозрение. -Лето, 1995.-С. 34-36.)

    Для этого объединяют существующие сети различных измерений и специализированные мониторинги природоохранных служб. Создание системы основано на внедрении современных средств контроля на базе единого информационного пространства.

    Структура системы экомониторинга Москвы включает два уровня.

    Нижний уровень системы включает:

    Федеральные, городские и ведомственные подсистемы специали­зированных мониторингов (мониторинг атмосферы, поверхностных вод, здоровья населения, радиодогический мониторинг, мониторинг санитар­ной очистки территории города, мониторинг недр и подземных вод, почв, зеленых насаждений, акустический мониторинг, градостроительный мо­ниторинг);

    Территориальные центры сбора и обработки данных, созданные на базе территориальных отделений Москомприроды.

    Эти подсистемы обеспечивают сбор полной и по возможности каче­ственной информации о состоянии окружающей среды на всей террито­рии города. В локальных центрах проводятся также анализ информации и ее отбор для передачи на верхний уровень.

    Территориальные центры обеспечивают сбор информации по источ­никам антропогенного загрязнения на территории административных округов и используют данные территориальных подразделений феде­ральных служб и городских хозяйственных организаций.

    Верхний уровень системы экомониторинга составляет информа­ционно-аналитический центр. В задачи верхнего уровня системы входят:

    Оперативная оценка экологической ситуации в городе;

    Расчет интегральных оценок экологической ситуации;

    Прогноз развития, экологической обстановки;

    Подготовка проектов управляющих воздействий и оценка последствий принимаемых решений.

    Очевидно, что информационная система экомониторинга Москвы имеет ярко выраженный распределенный характер. Поэтому она стро­ится на основе распределенной информационной сети.

    Для эффективного использования накапливаемых данных необхо­димы комплексная обработка и совершенные методы моделирования и представления данных.

    Геоинформационные системы являются оптимальным средством для представления и анализа пространственно - распределенных экологичес­ких данных.

    Подсистема специализированных мониторингов охватывает ряд организаций (Москомзем, НПО "Радон", НИиПИ Генплана), имеющих инструментальные пакеты ГИС. Другие организации (Мослесопарк, МГЦСЭН) подобного программного обеспечения не имеют. Интегра­ция данных в единую систему происходит двумя путями:

    На основе конвертирования форматов данных в единый для всей системы формат;

    На основе выбора единого программного обеспечения ГИС. Программный комплекс, разрабатываемый АО "Прима", обеспечи­вая решение задач территориальных отделений Москомприроды иди ко­митетов по охране природы крупных и средних городов, выполняет сле­дующие функции:

    Формирование и ведение баз экологической информации по терри­ториям, предприятиям, средам (воздух, вода, почва);

    Ведение базы данных нормативно-законодательных документов в области экологии;

    Ведение базы данных нормативов содержания загрязняющих ве­ществ в воздухе, воде, почве и продуктах питания;

    Ведение базы данных приборов экологического контроля.

    Кроме ведения баз данных предусмотрены работы по моделирова­нию и получению тематических карт. В частности, в системе произво­дятся следующие виды расчетов: расчет платежей за использование при­родных ресурсов и расчет полей концентрации загрязняющих веществ в атмосфере, воде и почве.

    Система экологического мониторинга предусматривает обмен данными между его участниками. Поэтому одним из главных требо­ваний, предъявляемых к программному обеспечению всех подсистем, является возможность конвертирования файлов данных в стандарт­ные форматы (dbf для файлов баз данных и DXF для графических файлов).

    При создании системы экомониторинга Москвы использовалась еди­ная система координат для всех подразделений экомониторинга. Все геоинформационные (включая экологические) данные должны иметь единую координатную привязку, и тогда при обмене информацией в циф­ровом виде не возникает никаких проблем.

    Масштабы карт, на которых работают разные подсистемы экомо­ниторинга, могут быть различными: от 1: 2 000 для территориаль­ных отделений Москомприроды до 1: 38 000 для верхнего уровня системы.

    В организации экомониторинга Москвы геоинформационные тех­нологии составляют основу, поскольку они обеспечивают решение за­дач экологического мониторинга Москвы.

    2.1.Общая методика проведения экологических

    2.2.Особенности компонентного состава

    Глава 3. Использование ГИС для ведения локальных экологических исследований (наполнение блока «экология»

    3.1.Создание слоя квартальной застройки базовой картографической основы города Калуги как необходимое условие для проведения дальнейших

    3.2.Картографическая оценка качества окружающей среды на территории города Калуги по стабильности

    3.3.Локальная оценка качества вод малых рек окрестностей города Калуги с использованием ГИС (Ячейка. Терепец. Киёвка, Калужка).

    3.4. Картографическая оценка качества окружающей среды на территории Калужского городского бора.

    3.5.Создание кадастра древесных и кустарниковых растений произрастающих на улицах города Калуги с использованием ГИС.

    Глава 4. Использование ГИС для ведения региональных экологических исследований (наполнение блока «экология» ГИС Калужской области).

    4.1 .Картографическая оценка качества окружающей среды на территории Калужской области по стабильности развития берёзы повислой.

    4.2.Региональная оценка качества вод с использованием ГИС в некоторых реках Калужской

    4.3.Создание карт оценки качества окружающей среды по результатам биоиндикационных исследований на территории ООПТ (национальный парк «Угра» и заповедник «Калужские засеки»).

    4.4.Картографическая оценка качества окружающей среды на территории Калужской области по заболеваемости экопатологиями детей до

    4.5. Создание кадастра редких и исчезающих видов грибов, растений и животных на территории Калужской области как блока ГИС «Красная книга

    Глава 5. Сравнительный анализ данных экологических исследований в среде ГИС.

    5.1 .Сравнительный анализ качества окружающей среды по состоянию древесных и кустарниковых растений и по показателю стабильности развития древесных растений на территории Ленинского округа города Калуга за 2004 год.

    5.2.Сравнительный анализ качества водной среды по результатам гидробиологических и химических исследований в малых реках окрестностей города

    5.3.Сравнительный анализ карт распространения редких и исчезающих видов грибов, растений и животных и суммарной изученности территории

    5.4.Сравнительный анализ карт распространения редких и исчезающих видов грибов, растений и животных и суммарной биоиндикацонной карты на территории Калужской области в период с 1997 по

    5.5.Сравнение суммарных биоиндикационных

    Введение Диссертация по наукам о земле, на тему "Использование ГИС-технологий в региональных и локальных экологических исследованиях (на примере Калужской обл.)"

    Актуальность темы. Рост численности населения и развитие техносферы существенно расширили область взаимодействия человека и природы. Действуя, не считаясь с законами живой природы и нарушая экологическое равновесие для удовлетворения своих потребностей, человечество, в конечном итоге, поставило себя в еще большую зависимость от состояния окружающей среды. Для выживания и дальнейшего развития человечества необходимы изучение Земли как целостной системы и формирование банка данных и знаний о процессах и элементах природной среды и общества в широком спектре их взаимодействия, анализ, оценка и прогнозирование динамики явлений и процессов, происходящих в окружающем мире с целью принятия экологически грамотных решений в сфере взаимодействия природы и общества (Экоинформатика. 1992). Для реализации рационального управления окружающей средой с учётом научно - обоснованных решений необходимо создание экологических информационных систем. Программа ООН по окружающей среде (ЮНЕП), созданная в 1972 году предусматривает создание глобальной системы наблюдения за окружающей средой. Данные для этой системы поставляют глобальная система наблюдения за окружающей средой (ГСМОС), информационно-справочная система ИНФОТЕРРА и другие крупные межнациональные проекты (Risser, 1988. Гершензон. 2003). С 1980 года развивается глобальная база данных о природных ресурсах (ГРИД). Работу с огромными массивами данных, информации и знаний, которые накопило и продолжает постоянно получать человечество, должны облегчить использование новых информационных технологий, в частности использование географических информационных систем (ГИС). ГИС - это компьютерные системы сбора, хранения, обработки и отображения пространственно-координированных данных, которые интегрируют разнородную информацию, поступающую из различных источников на основе пространственного положения, в результате чего появляется возможность сопоставлять разнообразные факторы среды и проводить комплексную геоэкологическую оценку территории (Сербенюк, 1990; Берлянт, 1996; Жуков, Лазарев, Новаковский, 1995).

    По материалам ГИС-Ассоциации в России экологические ГИС региональных и локальных уровней обычно применяют для решения какой-либо одной узкой задачи (отображение деградации флоры или фауны, моделирование влияния и распространения отдельных видов химических загрязнений, проведение мониторинга по конкретному параметру). Более приближёнными к комплексному анализу территории являются ГИС ООПТ различных уровней, но подобных работ единицы и общего подхода для них не разработано (Материалы., 2002, Проблемы.,2002). Большей частью региональные ГИС используются для решения экономических и социальных задач.

    Основываясь на необходимости создания региональных ГИС на территории РФ. в Калужской области реализуется областная целевая программа «Создание географической информационной системы Калужской области» для совершенствования систем учёта, оценки и потенциалов экономического развития области, в том числе использования и охраны природных ресурсов. В конце лета текущего года создан ГИС-центр в городе Калуге. ГИС Калужской области и города Калуги обязательно должны включать экологическую составляющую для рационального и эффективного управления социально-экономическим развитием области и города. При этом данные, которые наполняют блок «Экология» должны быть максимально достоверны, и получены от специалистов в конкретной области знаний в результате проведения специальных исследований. Необходимость проведения данной работы заключается в том, чтобы проанализировать и обосновать особенности и преимущества использования технологий ГИС в экологических исследованиях и включение результатов этих исследований в единое информационное пространство для формирования как можно более полной оценки состояния территории Калужской области и города Калуги. Только на основе таких оценок возможно эффективное и рациональное управление качеством окружающей среды.

    Цель и задачи исследования. Основная цель работы -изучение особенностей применения ГИС-технологий для региональных и локальных экологических исследований различной тематики на территории Калужской области. Для достижения цели были поставлены следующие задачи:

    1) Провести анализ использования ГИС-технологий и существующих методик обработки и представления экологической информации в экологических исследованиях на локальном и региональном уровнях.

    2) Создать слой квартальной застройки города Калуги как необходимую основу для геокодирования данных экологических исследований.

    3) Изучить особенности ведения биологических кадастров с применением ГИС-технологий на примере создания БД и связанных электронных карт по распространению редких и исчезающих видов живых организмов, занесённых в Красную книгу Калужской области и по распространению древесных и кустарниковых растений на улицах города Калуги.

    4) Проанализировать возможности одновременного совместного использования картографических слоев, характеризующих распространение отдельных редких и исчезающих видов грибов, растений и животных для оценки территорий Калужской области в среде ГИС.

    5) Проанализировать возможности использования картографического слоя и связанной БД описывающих распространение и характеристики древесных и кустарниковых растений на улицах города Калуги для целей управления работ по озеленению в среде ГИС.

    6) На основе внедрённых в среду ГИС данных биоиндикационных исследований провести картографический анализ основных тенденций в пространственной и временной динамике распределения показателя стабильности развития живых организмов на территориях города Калуги и Калужской области.

    7) Выявить и проанализировать возможности использования ГИС-технологий как инструмента для проведения сравнительного анализа разнородных экологических характеристик в пределах изучаемой территории и возможности применения результатов комплексного анализа экологической информации в ГИС для принятия решений в области управления качеством окружающей среды.

    Научная новизна работы. Впервые создан целостный блок ГИС («Красная книга Калужской области»), включающий электронные карты и связанные БД по распространению редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Впервые в среде ГИС использована БД, включающая специфические биологические характеристики древесных и кустарниковых растений на улицах города по данным натурных исследований специалистов-биологов и создана связанная карта месторасположений объектов кадастра.

    Получены новые данные о пространственно-временной динамике качества окружающей среды Калужской области по стабильности развития живых организмов в период 2000-2006 годы. Эти данные подтверждают выявленные ранее общие тенденции динамики качества среды, определяемого системой биомониторинга области.

    Впервые проведён сравнительный площадной анализ качества окружающей среды по показателю стабильности развития древесных растений и по распределению показателя состояния древесных и кустарниковых растений на территории Ленинского округа города Калуги.

    Впервые проведён сравнительный площадной анализ качества окружающей среды по показателю стабильности развития берёзы повислой и по распределению редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Практическая значимость работы. Слой квартальной застройки используется как основа для поадресной привязки в проведении целого ряда экологических исследований на территории города Калуги: медико-экологическое картографирование, кадастр зелёных насаждений на улицах города Калуги, биоиндикационные исследования и другие.

    Картографическое представление и связанные БД кадастра древесных и кустарниковых растений улиц города Калуги используются в управлении работами по озеленению города с минимальными экономическими затратами и максимальной научной обоснованностью. Представление данных в ГИС так же позволяет вести мониторинг численности и состояния объектов озеленения с оперативным отображением информации. Данные используются в Управлении хозяйством управы города Калуги, Комитетом по охране окружающей среды и природным ресурсам, Калужской городской Думой.

    Блок электронных карт и БД «Красная книга Калужской области» используется в практике деятельности государственной экологической экспертизы и при оценке воздействия планируемой хозяйственной деятельности на территории Калужской области. Кроме того, эта информация благодаря ГИС-технологиям открывает новые возможности для биоэкологических исследований. позволяя интегрировать разнородную информацию. Всего создано 578 слоев (по количеству видов, занесенных в Красную книгу Калужской области) распространения редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Создано более 50 электронных карт и связанных БД по результатам биоиндикационных исследований на локальном и региональном уровнях. Эти электронные карты и БД в ГИС используются в работе Лаборатории биоиндикации КГПУ им. К.Э.Циолковского, Калужского городского комитета по охране окружающей среды, Центра экологической политики России, а так же при проведении школьного биомониторинга разного масштаба.

    Отдельные исследования были поддержаны грантами Центра Исследования Международного Развития IDRC (Канада) № 10051805-154 и РГНФ.

    Разработанные алгоритмы и методики создания тематических электронных карт и БД и использования ГИС-технологий в экологических исследованиях могут быть рекомендованы как типовые при аналогичных исследованиях как на территориях города Калуги и Калужской области, так и в других городах и субъектах Российской Федерации.

    Заложена основа комплексного экологического анализа посредством ГИС-технологий на территориях города Калуги и Калужской области.

    Апробация работы. Основные положения представляемой диссертационной работы и результаты отдельных научных исследований были представлены на: межрегиональной научно-практической конференции «Река Ока - третье тысячелетие» (Калуга, 2001), региональной студенческой научной конференции «Применение кибернетических методов в решении проблем общества XXI века» (Обнинск, 2003), международной научно-практической конференции «Эколого-биологические проблемы водоемов бассейна реки Днепр» (Украина, Новая Каховка, 2004), региональной научной конференции «Техногенные системы и экологический риск» (Обнинск, 2005), XII Всероссийской конференции «Муниципальные геоинформационные системы» (Обнинск, 2005) международной молодежной конференции («TUNZA, Дубна +2») «Молодежь за безопасную окружающую среду для устойчивого развития» (г. Дубна, Московская область, 2005 г.), конференция с международным участием «Экология человека» (Архангельск, 2004 г.)

    Объем и структура диссертации. Диссертационная работа состоит из введения, пяти глав и заключения, содержит список литературы из 155 наименований на русском и английском языках. Объём диссертации составляет 159 страниц машинописного текста, включающих 48 рисунков и 6 таблиц.

    Заключение Диссертация по теме "Геоэкология", Смирницкая, Наталья Николаевна

    1. На современном этапе развития ГИС необходимо создание новых методик и внедрение достоверных результатов экологических исследований в блоки экологической информации локальных и региональных ГИС.

    2. Созданный слой квартальной застройки является необходимой основой для объединения данных всех экологических исследований в городе Калуге, как наиболее приближённый к математической основе, и является визуальным отображением пространства города.

    3. Созданные в ГИС биологические кадастры регионального и муниципального уровней открывают новые возможности для эффективного и экономичного использования данных - создания тематических электронных карт как по отдельным параметрам, так и для комплексного сравнения первичной информации.

    4. Совместное использование созданных 578 картографических слоев распространения редких и исчезающих видов грибов, растений и животных, занесённых в «Красную книгу Калужской области» в среде ГИС позволяет оценивать не только характеристики состояния отдельных видов и их групп, но и судить о состоянии территории анализируемых участков по плотности заселения редкими видами живых организмов.

    5. Входящие в блок «Экология» Калужской городской ГИС картографический слой и связанная БД характеризующие распространение и состояние древесных и кустарниковых растений на улицах города Калуги позволяет оценивать зелёные насаждения города по 6 параметрам (вид, высота, окружность, возраст, состояние, рекомендации специалистов), что значительно сокращает материальные и временные затраты по рациональному управлению работ по озеленению.

    6. Сравнительный картографический анализ данных исследований по распределению показателей состояния древесных и кустарниковых растений и по показателю стабильности развития древесных растений на территории Ленинского округа города Калуга за 2004 год, и данных оценки качества окружающей среды по коэффициенту стабильности развития берёзы повислой на территории Калужской области за 1997-2005 годы, показал, что ГИС-технологии являются оптимальным инструментом для изучения динамики анализируемых параметров. Выявлено совпадение в пространственном распределении показателей комфортности окружающей среды для произрастания и существования растительных организмов по состоянию объектов озеленения и по стабильности развития древесных растений. Выявлена многолетняя тенденция усреднения значений коэффициента флуктуирующей асимметрии и сохранения основных контуров благоприятного и неблагоприятного качества окружающей среды на территории Калужской области.

    7. Комплексные исследования территории Калужской области (включающие в себя сравнение качества среды по разным параметрам - стабильность развития березы, гидробиологической индикации, линейной нагрузке, распространению редких и исчезающих видов животных, растений и грибов) показывают, что ГИС-технологии позволяют приблизиться к геосистемной оценке анализируемой территории, благодаря одной из главных функций ГИС - объединению разнородной информации на основе пространственной локализации.

    8. Результаты комплексного анализа экологической информации в ГИС (электронные карты по нескольким параметрам, сравнительные карты динамики экологических процессов) являются готовой основой для принятия решений в области управления качеством окружающей среды.


    Система единого экологического мониторинга (ЕЭМ) является основным инструментом для решения проблем взаимодействия человека и окружающей среды, ресурсо- и энергосбережения, рационального природопользования, особенно в промышленно развитых районах с напряженной экологической обстановкой, для реализации концепции обеспечения экологической безопасности жизнедеятельности на глобальном, региональном и объектовом уровнях, имеющей много аспектов: от философских и социальных до медико-биологических, экономических и инженерно-технических. Центральным звеном системы ЕЭМ, во многом определяющим ее эффективное функционирование, является информационная система.
    Рассмотрим принципы построения ГИС ЕЭМ для региона городского типа. Для реализации комплексного подхода к решению задачи обеспечения экологической безопасности она в общем случае должна содержать следующие взаимосвязанные структурные звенья: базы и банки данных экологической, правовой, медико-биологической, санитарно-гигиенической, технико-экономической направленностей; блок моделирования и оптимизации промышленных объектов; блок восстановления по данным измерений и прогноза распространения полей экологических и метеорологических факторов;
    ¦ блок принятия решений.
    Для административных органов регионального управления можно выделить ряд функций, по которым возникает необходимость информационной поддержки принимаемых решений в области экологической безопасности жизнедеятельности населения, рационального энергопользования и энергосбережения. К таким функциям можно отнести: отчетность о результатах выполнения работ в рамках социально-экологического состояния региона и мерах по его улучшению; контроль текущего состояния окружающей среды, превышения предельно допустимых концентраций вредных и тому подобных веществ на подведомственной территории; планирование (годовое, квартальное) программ социального развития, изучения качества жизни населения, повышения экологической безопасности жизнедеятельности населения в регионе; управление в повседневной административной деятельности (разбор претензий, жалоб и конфликтов с юридическими и физическими лицами).
    Для выполнения вышеперечисленных функций требуется полная и достоверная информация Потоки информации, необходимой для адекватной оценки складывающейся ситуации и принятия управляющих или корректирующих решений, проходят разные стадии: получение, обработка и отображение информации, оценка ситуации и принятие решений. Столь многофункциональная система с большими объемами географически привязанной информации может быть эффективно реализована только с применением рассмотренных выше современных геоинформационных технологий.
    Комплексность экологических проблем, связывая воедино задачи, решаемые разными специалистами, требует системного подхода к их решению, проявляющегося в конкретных действиях специалистов каждой отрасли. Структура информационного обеспечения системы экологического мониторинга отражает эту специфику. По функциональному назначению его целесообразно разделить на проблемно-ориентированные блоки (или применительно к терминологии ГИС-слои) информации отдельных региональных служб, включая архитектурно-планировочные, коммунальные, инженерного обеспечения и др.
    Информационное обеспечение системы ЕЭМ должно содержать следующие тематические слои информации (рис. 13.6). общая экологическая характеристика (атмосферный воздух, водоемы, почва, санитарно-эпидемиологические условия и др.); источники негативного воздействия на окружающую среду (выбросы и сбросы, твердые отходы и др.); зонирование территорий (объекты производственного назначения, селитебные территории, административные здания и др.); система охранных территорий (памятники истории и архитектуры, водоохранные зоны и др); инженерно-технические и транспортные коммуникации (магистрали наземного и подземного видов транспорта, теплотрассы, линии электропередачи и др); здравоохранение и социально-бытовые условия; нормативные и правовые документы, перспективы развития региона
    Одним из важнейших элементов системы являются данные об объективном состоянии окружающей среды. Для примера рассмотрим структуру баз данных с показателями качества атмосферного

    Рис 13 6 Тематическая информация в региональной системе ЕЭМ

    воздуха. Состояние атмосферного воздуха характеризуется в первую очередь результатами экспериментального определения наличия в нем тех или иных загрязняющих веществ и их концентраций. Данная информация складывается из результатов периодического пробоотборного анализа, проводимого в регионе соответствующими государственными организациями (например, органами санитарно- эпидемиологического надзора), и данных, поступающих со стационарных постов непрерывных экологических наблюдений. Поэтому картографическая база данных по контролю атмосферы должна содержать полную информацию о местах контроля (адрес точек отбора проб), времени проведения замеров, погодных условиях в момент забора пробы, концентрации измерявшихся ингредиентов. На основе такой информации современные ГИС позволяют решать задачи интерполяции - восстановления непрерывных полей по дискретным данным, задачи комплексной оценки воздействия на экологическую ситуацию региона полей загрязнений различных ингредиентов и др.
    Тематическая информация, касающаяся расположения и конфигурации основных источников загрязнения окружающей среды, должна быть представлена соответствующими электронными картами. В связанных с ними таблицах целесообразно хранить общие сведения о предприятиях региона (название, адрес, администрация и т.д.). Такие базы данных в совокупности с соответствующими картами позволяют получать ответы на следующие запросы: что представляет собой объект, выделенный на карте; где он расположен; какие объекты выбрасывают определенные вредные вещества; какие предприятия выбрасывают данное вредное вещество в объеме больше заданного; какие вещества выбрасывает данное предприятие и в каком объеме; какие предприятия превышают нормативы ПДВ; у какого предприятия просрочено действие разрешения на выброс; у какого предприятия задолженность по выплатам за выбросы в атмосферу.
    Данные об инженерно-технических и транспортных коммуникациях должны храниться в ГИС ЕЭМ также в виде соответствующих карт и тематических баз данных. Следует отметить, что для инженерно-технических коммуникаций целесообразно иметь в базе данных и дополнительную графическую информацию в виде схем, чертежей и пояснительных документов, необходимых для их безопасной эксплуатации (ГИС предоставляет широкие возможности для работы с такой информацией).
    В базах данных по транспортным магистралям должны содержаться такие экологические показатели, как интенсивность движения, спектр и объем вредных выбросов на единицу длины, виброа- кустические данные и др. Очевидно, что названные показатели изменяются на разных участках магистрали. Поэтому при картировании магистрали представляются в виде совокупности взаимосвязанных дуг, каждой из которых в базе данных ставятся в соответствие ее характеристики. В целом графические и тематические базы данных по транспортным магистралям должны обеспечивать выполнение запросов: какое количество заданного вредного вещества выбрасывается по всей длине транспортной магистрали, на какой магистрали выбрасывается максимальное количество определенного вредного вещества или всех веществ вместе; каково общее количество транспортных единиц, следующих по заданной магистрали или количество транспортных единиц заданного вида; какая магистраль (или участок какой магистрали) является наиболее нагруженной в транспортном отношении.
    Изображение автомобильных магистралей на карте линиями различной ширины в зависимости от интенсивности движения транспорта по ним или объема выбросов загрязняющих веществ автомобилями на различных участках магистралей упрощает анализ транспортной ситуации, а одновременное использование базы данных позволяет получить любую интересующую пользователя информацию.
    Дополнительные возможности для анализа экологической ситуации предоставляют оверлейные операции по наложению слоев информации в ГИС. Так, одновременный вывбд на экран полей концентрации оксида углерода, построенных по результатам ее измерений, и выбросов этого загрязнителя вдоль транспортных магистралей позволяет сделать вывод об источнике экологической опасности и принять соответствующие меры по ее устранению
    Кроме распространенных баз данных в системе информационного обеспечения ЕЭМ особое значение имеет блок моделирования распределения полей концентрации загрязняющих веществ на основе общих показателей работы промышленных объектов или других источников загрязнения и степени их воздействия на ОС. Такие расчеты необходимы при анализе неблагополучной экологической ситуации в регионе для выявления ее виновников (вместе с анализом данных прямых измерений или вместо них, когда их получение не представляется возможным) или при прогнозировании экологической обстановки при вводе в действие или реконструкции тех или иных источников антропогенного воздействия на окружающую среду и определении размера затрат на уменьшение количества вредных выбросов в окружающую среду. Точность моделирования текущей ситуации в этом случае, как правило, невелика, но достаточна для выявления очагов загрязнения и выработки адекватного управляющего воздействия на технологическом и экономическом уровнях. В настоящее время существует ряд методик и самостоятельных программных средств (не входящих в состав ГИС), позволяющих определять поля концентраций загрязняющих веществ по результатам решения уравнений, описывающих с той или иной сте

    пенью приближения рассеяние примесей в атмосфере или водной среде. В качестве нормативной для моделирования процессов в атмосфере утверждена методика ОНД-86.
    Широкие интеграционные возможности ГИС позволяют использовать в качестве источников информации внешние специализированные расчетные модули и программные средства Поэтому их включение в состав ГИС ЕЭМ не вызывает особенных трудностей.
    Таким образом, ГИС ЕЭМ позволяет эффективно реализовать комплексный подход к решению задач обеспечения экологической безопасности региона и создает единое информационное пространство для служб управления регионом.
    ЛИТЕРАТУРА Цветков В Я Геоинформационные системы и технологии М Финансы и статистика, 1998 Бигаевский Л М, Вахромеева Л А Картографические проекции М Недра, 1992 Коновалова Н В, Капралов Е Г Введение в ГИС Петрозаводск Изд-во Петрозаводского университета, 1995 Разработка ГИС мониторинга лесных пожаров России иа основе ARC View CIS 30 и глобальной сети Internet / С А Барталев, А И Беляев, Д В Ершов и др / / ARC REVIEW (современные геоинформационные технологии) 1998 № 1 Озеров Ю, Сясин В ARC /INFO и ARC View в МЧС России // ARC REVIEW (современные геоинформационные технологии) 1997 № 2 Матросов А С Информационные технологии в системе управления отходами Учеб пособие М УРАО, 1999

    Опыт комплексных географических исследований и системного тематического картографирования позволил геоинформационному картографированию занять ведущие позиции в развитии картографической науки и производства.

    Сопоставление разновременных и разнотематических карт позволяет перейти к прогнозам на основе выявленных взаимосвязей и тенденций развития явлений и процессов. Прогноз по картам позволяет прогнозировать и современные, но еще не известные явления, например, прогнозы погоды или неизвестные полезные ископаемые.

    В основе прогноза лежат картографические экстраполяции, трактуемые как распространение закономерностей, полученных в ходе картографического анализа какого-либо явления, на неизученную часть этого явления, на другую территорию или на будущее время. Картографические экстраполяции, как и любые другие (математические, логические), не универсальны. Их достоинство в том, что они хорошо приспособлены для прогнозирования и пространственных, и временных закономерностей. В практике прогнозирования по картам широко применяют также известные в географии методы аналогий, индикации, экспертные оценки, расчет статистических регрессий и др.

    Литература:

    1. Трифонова Т.А., Мищенко Н.В., Краснощеков А.Н. Геоинформационные системы и дистанционное зондирование в экологических исследованиях: Учебное пособие для вузов. - М., 2005. – 352 с.

    2. Стурман В.И. Экологическое картографирование: Учебное пособие. – Москва, 2003.

    Тема 14. Содержание и методы составления экологических карт. План:

    1. Картографирование атмосферных проблем.

    2. Картографирование загрязнения вод суши.

    3. Качественные и количественные оценки экологических ситуаций.

    1. Картографирование атмосферных проблем

    Атмосфера как наиболее динамичная среда характеризуется сложной пространственно-временной динамикой уровней содержания примесей. В каждый данный момент времени уровень загрязненности атмосферы над некоторой территорией или в той или иной точке определяется балансом по отдельным поллютантам и их совокупности. В приходной части баланса находятся:

    ♦ поступление загрязняющих веществ от совокупности техногенных и естественных источников в пределах рассматриваемой территории;

    ♦ поступление загрязняющих веществ от источников за пределами рассматриваемой территории, в том числе отдаленных (дальний перенос);

    ♦ образование загрязняющих веществ в результате вторичных химических процессов, протекающих в самой атмосфере.

    В расходной части баланса находятся:

    ♦ вынос загрязняющих веществ за пределы рассматриваемой территории;

    ♦ осаждение загрязняющих веществ на земную поверхность;

    ♦ разрушение загрязняющих веществ в результате процессов самоочищения.

    Факторы интенсивности осаждения и самоочищения для разных веществ в значительной степени совпадают. Поэтому концентрации разных веществ обычно меняются относительно согласованно, подчиняясь одним и тем же временным и пространственным закономерностям.

    Поступление загрязняющих веществ от естественных и техногенных пылящих источников усиливается при усилении ветра (в сочетании с наличием незакрепленных поверхностей), при вулканических процессах.

    Таким образом, картографирование загрязнения атмосферы складывается из:

    ♦ картографирования потенциала загрязнения атмосферы;

    ♦ картографирования источников загрязнения;

    ♦ картографирования уровней загрязнения.


© 2024
artistexpo.ru - Про дарение имущества и имущественных прав